ARTÍCULO
TITULO

Convergence and Loss Bounds for Bayesian Sequence Prediction

Hutter    
M.    

Resumen

No disponible

 Artículos similares

       
 
Wen-Chang Cheng, Hung-Chou Hsiao, Yung-Fa Huang and Li-Hua Li    
This research proposes a single network model architecture for mask face recognition using the FaceNet training method. Three pre-trained convolutional neural networks of different sizes are combined, namely InceptionResNetV2, InceptionV3, and MobileNetV... ver más
Revista: Information

 
Linhua Zhang, Ning Xiong, Xinghao Pan, Xiaodong Yue, Peng Wu and Caiping Guo    
In unmanned aerial vehicle photographs, object detection algorithms encounter challenges in enhancing both speed and accuracy for objects of different sizes, primarily due to complex backgrounds and small objects. This study introduces the PDWT-YOLO algo... ver más
Revista: Algorithms

 
Chunwei Hu, Xianfeng Liu, Sheng Wu, Fei Yu, Yongkun Song and Jin Zhang    
Accurate crowd flow prediction is essential for traffic guidance and traffic control. However, the high nonlinearity, temporal complexity, and spatial complexity that crowd flow data have makes this problem challenging. This research proposes a dynamic g... ver más
Revista: Applied Sciences

 
Hui Luo, Lianming Cai and Chenbiao Li    
As the operational time of the railway increases, rail surfaces undergo irreversible defects. Once the defects occur, it is easy for them to develop rapidly, which seriously threatens the safe operation of trains. Therefore, the accurate and rapid detect... ver más
Revista: Applied Sciences

 
Peter Marvin Müller, Georgios Bletsos and Thomas Rung    
The contribution is devoted to combined shape- and mesh-update strategies for parameter-free (CAD-free) shape optimization methods. Three different strategies to translate the shape sensitivities computed by adjoint shape optimization procedures into sim... ver más
Revista: Aerospace