ARTÍCULO
TITULO

Efficient Learning of Variable-Resolution Cognitive Maps for Autonomous Indoor Navigation

Arleo    
A    
Millà    
n    
J del R    
Floreano    
D    

Resumen

No disponible

 Artículos similares

       
 
Zihao Zhu and Yonghua Xie    
Black soil plays an important role in maintaining a healthy ecosystem, promoting high-yield and efficient agricultural production, and conserving soil resources. In this paper, a typical black soil area of Keshan Farm in Qiqihar City, Heilongjiang Provin... ver más
Revista: Applied Sciences

 
Seokjoon Kwon, Jae-Hyeon Park, Hee-Deok Jang, Hyunwoo Nam and Dong Eui Chang    
Deep learning algorithms are widely used for pattern recognition in electronic noses, which are sensor arrays for gas mixtures. One of the challenges of using electronic noses is sensor drift, which can degrade the accuracy of the system over time, even ... ver más
Revista: Applied Sciences

 
Jaroslaw Kurek, Tomasz Latkowski, Michal Bukowski, Bartosz Swiderski, Mateusz Lepicki, Grzegorz Baranik, Bogusz Nowak, Robert Zakowicz and Lukasz Dobrakowski    
In the evolving realities of recruitment, the precision of job?candidate matching is crucial. This study explores the application of Zero-Shot Recommendation AI Models to enhance this matching process. Utilizing advanced pretrained models such as all-Min... ver más
Revista: Applied Sciences

 
Lei Li, Xiaobao Zeng, Xinpeng Pan, Ling Peng, Yuyang Tan and Jianxin Liu    
Microseismic monitoring plays an essential role for reservoir characterization and earthquake disaster monitoring and early warning. The accuracy of the subsurface velocity model directly affects the precision of event localization and subsequent process... ver más
Revista: Applied Sciences

 
Gleice Kelly Barbosa Souza, Samara Oliveira Silva Santos, André Luiz Carvalho Ottoni, Marcos Santos Oliveira, Daniela Carine Ramires Oliveira and Erivelton Geraldo Nepomuceno    
Reinforcement learning is an important technique in various fields, particularly in automated machine learning for reinforcement learning (AutoRL). The integration of transfer learning (TL) with AutoRL in combinatorial optimization is an area that requir... ver más
Revista: Algorithms