Revistas
Artículos
Publicaciones
Documentos
REVISTA
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
TODAS
Redirigiendo al acceso original de articulo en
19
segundos...
Inicio
/
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
/
Vol: 51 Núm: 6 Par: 0 (2002)
/
Artículo
ARTÍCULO
TITULO
Using Learning Automata for Adaptive Push-Based Data Broadcasting in Asymmetric Wireless Environments
Nicopolitidis
P. Papadimitriou
G. I. Pomportsis
A. S.
Resumen
No disponible
PÁGINAS
pp. 1652 - 1660
NÚMERO
Volumen: 51 Número: 6 Parte: 0 (2002)
MATERIAS
INGENIERÍA Y CONSTRUCCIÓN CIVIL
REVISTAS SIMILARES
Water
Inteligencia Artificial
Applied Sciences
Artículos similares
Application of learning techniques based on kernel methods for the fault diagnosis in industrial processes
Acceso
Jose M. Bernal-de-Lázaro
Pág. 74 - 81
This article summarizes the main contributions of the PhD thesis titled: "Application of learning techniques based on kernel methods for the fault diagnosis in Industrial processes". This thesis focuses on the analysis and design of fault diagnosis syste...
ver más
Revista:
Inteligencia Artificial
Application of data mining and artificial intelligence techniques to mass spectrometry data for knowledge discovery
Acceso
Hugo López-Fernández
Pág. 22 - 25
Mass spectrometry using matrix assisted laser desorption ionization coupled to time of flight analyzers (MALDI-TOF MS) has become popular during the last decade due to its high speed, sensitivity and robustness for detecting proteins and peptides. This a...
ver más
Revista:
Inteligencia Artificial
Prediction of Grain Porosity Based on WOA?BPNN and Grain Compression Experiment
Acceso
Jiahao Chen, Jiaxin Li, Deqian Zheng, Qianru Zheng, Jiayi Zhang, Meimei Wu and Chaosai Liu
The multi-field coupling of grain piles in grain silos is a focal point of research in the field of grain storage. The porosity of grain piles is a critical parameter that affects the heat and moisture transfer in grain piles. To investigate the distribu...
ver más
Revista:
Applied Sciences
A Transfer Learning Approach Based on Radar Rainfall for River Water-Level Prediction
Acceso
Futo Ueda, Hiroto Tanouchi, Nobuyuki Egusa and Takuya Yoshihiro
River water-level prediction is crucial for mitigating flood damage caused by torrential rainfall. In this paper, we attempt to predict river water levels using a deep learning model based on radar rainfall data instead of data from upstream hydrological...
ver más
Revista:
Water
Ensembling Supervised and Unsupervised Machine Learning Algorithms for Detecting Distributed Denial of Service Attacks
Acceso
Saikat Das, Mohammad Ashrafuzzaman, Frederick T. Sheldon and Sajjan Shiva
The distributed denial of service (DDoS) attack is one of the most pernicious threats in cyberspace. Catastrophic failures over the past two decades have resulted in catastrophic and costly disruption of services across all sectors and critical infrastru...
ver más
Revista:
Algorithms
Revistas destacadas
Infrastructures
Informed Infraestructure
BiT
Revista de la Construcción
Ver todas las revistas