Redirigiendo al acceso original de articulo en 18 segundos...
ARTÍCULO
TITULO

Cognitive Routing in Software-Defined Underwater Acoustic Networks

Huma Ghafoor and Insoo Koo    

Resumen

There are two different types of primary users (natural acoustic and artificial acoustic), and there is a long propagation delay for acoustic links in underwater cognitive acoustic networks (UCANs). Thus, the selection of a stable route is one of the key design factors for improving overall network stability, thereby reducing end-to-end delay. Software-defined networking (SDN) is a novel approach that improves network intelligence. To this end, we propose a novel SDN-based routing protocol for UCANs in order to find a stable route between source and destination. A main controller is placed in a surface buoy that is responsible for the global view of the network, whereas local controllers are placed in different autonomous underwater vehicles (AUVs) that are responsible for a localized view of the network. The AUVs have fixed trajectories, and sensor nodes within transmission range of the AUVs serve as gateways to relay the gathered information to the controllers. This is an SDN-based underwater communications scheme whereby two nodes can only communicate when they have a consensus about a common idle channel. To evaluate our proposed scheme, we perform extensive simulations and improve network performance in terms of end-to-end delay, delivery ratio, and overhead.

 Artículos similares

       
 
Chenglei Lv, Qiushi Sun, Huifang Chen and Lei Xie    
Due to the relative motion between transmitters and receivers and the multipath characteristic of wideband underwater acoustic channels, Doppler and channel estimations are of great significance for an underwater acoustic (UWA) communication system. In t... ver más

 
Peizhen Zhang, Xiaofeng Yin, Bin Wang and Ziyi Feng    
The construction of wind farm pilings, submarine pipelines, and underwater submarines involves multiple cylinders. However, there is currently a lack of economic research on predicting the mechanism and characteristics of mutual coupling of acoustic scat... ver más

 
Xiaodong Cui, Zhuofan He, Yangtao Xue, Keke Tang, Peican Zhu and Jing Han    
Underwater Acoustic Target Recognition (UATR) plays a crucial role in underwater detection devices. However, due to the difficulty and high cost of collecting data in the underwater environment, UATR still faces the problem of small datasets. Few-shot le... ver más

 
Haiyang Yao, Tian Gao, Yong Wang, Haiyan Wang and Xiao Chen    
To overcome the challenges of inadequate representation and ineffective information exchange stemming from feature homogenization in underwater acoustic target recognition, we introduce a hybrid network named Mobile_ViT, which synergizes MobileNet and Tr... ver más

 
Jing Li, Jin Fu and Nan Zou    
The underwater channel is bilateral, heterogeneous, uncertain, and exhibits multipath transmission, sound line curvature, etc. These properties complicate the structure of the received pulse, causing great challenges in direct signal identification for r... ver más