Resumen
Kemiskinan merupakan masalah serius yang dihadapi Indonesia. Oleh karena itu, penulis mencoba membantu pemerintah dengan melakukan analisa untuk melihat tingkat perkembangan penduduk miskin di Indonesia untuk tahun yang akan datangi. Metode yang digunakan untuk melakukan hal ini adalah jaringan saraf tiruan Bayesian Regulation. Metode ini merupakan pengembangan dari metode backpropagation yang sering digunakan untuk mengestimasi data. Data yang digunakan adalah data penduduk miskin di Indonesia tahun 2012-2018, yang bersumber dari Badan Pusat Statistik Indonesia. Berdasarkan data ini akan dibentuk dan ditentukan model arsitektur jaringan yang digunakan dengan metode Bayesian Regulation, antara lain 10-5-10-2, 10-10-10-2, 10-10-15-2, 10-10-20-2, 10-15-10-2, 10-15-15-2, 10-15-20-2, 10-20-20-2, 10-25-25-2 dan 10-30-30-2. Dari 10 model ini setelah dilakukan pelatihan dan pengujian diperoleh hasil bahwa model arsitektur terbaik adalah 10-25-25-2. Tingkat akurasi dari model arsitektur ini adalah 94,1% dan 61,8% dengan nilai MSE sebesar 0,00013571 dan 0,00005189. Hasil penelitian ini berupa estimasi penduduk miskin untuk 5 tahun yang akan datang