Resumen
Atmósfera 29(1), 23-34 (2016)Fluid dynamics has the purpose of understanding the movement of liquids and gases by functions that describe the distribution of velocities. Some natural phenomena that present these functions are hurricanes, generated by pressure differences; cyclones, developed by the horizontal temperature gradient; and eddies, associated with a hydrostatic pressure gradient. In the particular case of eddies, they generate the so-called secondary velocities, which are flows formed by the presence of unequal forces between a hydrostatic pressure gradient and centrifugal forces, or by shear stresses at the joining of two flows. In addition, this phenomenon is observed in tornados, where the centrifugal force is greater in the upper layer and decreases towards the bottom, whereas the pressure gradient moves from a high to a low pressure; while in rivers it is detected particularly in bends or joins. Understanding the development of secondary currents is important for the reason that flow behavior is a function of the magnitude of these currents; hence their characterization is fundamental. The objective of this study was to obtain the secondaryvelocities developed as an effect of the union of two water currents, based on data acquired from Doppler acoustic recorders. A second objective was to draw the secondary velocities and to show the rotation flow effect, a kind of results that are difficult to obtain in any other way. The flow mechanisms are related with erosion and sedimentation processes; therefore, understanding them might help to evaluate and predict morphological changes in rivers.