Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Applied Sciences  /  Vol: 7 Núm: 4 Par: April (2017)  /  Artículo
ARTÍCULO
TITULO

Learning-Based Optimal Desired Compensation Adaptive Robust Control for a Flexure-Based Micro-Motion Manipulator

Shi Jia    
Yao Jiang    
Tiemin Li and Yunsong Du    

Resumen

Flexure-based micro-motion mechanisms activated by piezoelectric actuators have a wide range of applications in modern precision industry, due to their inherent merits. However, system performance is negatively affected by model uncertainty, disturbance and uncertain nonlinearity, such as the cross-coupling effect and the hysteresis of the actuator. This paper presents an integrated learning-based optimal desired compensation adaptive robust control (LODCARC) methodology for a flexure-based parallel micro-motion manipulator. The proposed LODCARC optimizes the reference trajectory used in the desired compensation adaptive robust control (DCARC) by iterative learning control (ILC), which can greatly compensate for the effect of repetitive disturbance and uncertainty. The proposed control approach was tested on the flexure-based micro-motion manipulator, with the comparative results of high-speed tracking experiments verifying that the proposed LODCARC controller can achieve excellent tracking and contouring performances with parametric adaption and disturbance robustness. Furthermore, the iterative reference optimization can effectively accommodate the effects of unmodeled repetitive uncertainty from the micro-motion system. This study provides a practical and effective technique for the flexure-based micro-motion manipulator to achieve high-precision motion.

 Artículos similares

       
 
Hend Khalid Alkahtani, Khalid Mahmood, Majdi Khalid, Mahmoud Othman, Mesfer Al Duhayyim, Azza Elneil Osman, Amani A. Alneil and Abu Sarwar Zamani    
The fast development of the Internet of Things (IoT) and widespread utilization in a large number of areas, such as vehicle IoT, industrial control, healthcare, and smart homes, has made IoT security increasingly prominent. Ransomware is a type of malwar... ver más
Revista: Applied Sciences

 
Dushi Wen, Sirui Zheng, Jiazhen Chen, Zhouyi Zheng, Chen Ding and Lei Zhang    
In the world, with the continuous development of modern society and the acceleration of urbanization, the problem of air pollution is becoming increasingly salient. Methods for predicting the air quality grade and determining the necessary governance are... ver más
Revista: Information

 
Rui-Yu Li, Yu Guo and Bin Zhang    
Nonnegative matrix factorization (NMF) is an efficient method for feature learning in the field of machine learning and data mining. To investigate the nonlinear characteristics of datasets, kernel-method-based NMF (KNMF) and its graph-regularized extens... ver más
Revista: Information

 
Tjokorda Agung Budi Wirayuda, Rinaldi Munir and Achmad Imam Kistijantoro    
In computer vision, ethnicity classification tasks utilize images containing human faces to extract ethnicity labels. Ethnicity is one of the soft biometric feature categories useful in data analysis for commercial, public, and health sectors. Ethnicity ... ver más
Revista: Informatics

 
Abigail Copiaco, Leena El Neel, Tasnim Nazzal, Husameldin Mukhtar and Walid Obaid    
This study introduces an innovative all-in-one malware identification model that significantly enhances convenience and resource efficiency in classifying malware across diverse file types. Traditional malware identification methods involve the extractio... ver más
Revista: Applied Sciences