Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Energies  /  Vol: 10 Núm: 1 Par: January (2017)  /  Artículo
ARTÍCULO
TITULO

Study on the Adsorption, Diffusion and Permeation Selectivity of Shale Gas in Organics

Zhouhua Wang    
Yun Li    
Huang Liu    
Fanhua Zeng    
Ping Guo and Wei Jiang    

Resumen

As kerogen is the main organic component in shale, the adsorption capacity, diffusion and permeability of the gas in kerogen plays an important role in shale gas production. Based on the molecular model of type II kerogen, an organic nanoporous structure was established. The Grand Canonical Monte Carlo (GCMC) and Molecular Dynamics (MD) methods were used to study the adsorption and diffusion capacity of mixed gas systems with different mole ratios of CO2 and CH4 in the foregoing nanoporous structure, and gas adsorption, isosteric heats of adsorption and self-diffusion coefficient were obtained. The selective permeation of gas components in the organic pores was further studied. The results show that CO2 and CH4 present physical adsorption in the organic nanopores. The adsorption capacity of CO2 is larger than that of CH4 in organic pores, but the self-diffusion coefficient of CH4 in mixed gas is larger than that of CO2. Moreover, the self-diffusion coefficient in the horizontal direction is larger than that in the vertical direction. The mixed gas pressure and mole ratio have limited effects on the isosteric heat and the self-diffusion of CH4 and CO2 adsorption. Regarding the analysis of mixed gas selective permeation, it is concluded that the adsorption selectivity of CO2 is larger than that of CH4 in the organic nanopores. The larger the CO2/CH4 mole ratio, the greater the adsorption and permeation selectivity of mixed gas in shale. The permeation process is mainly controlled by adsorption rather than diffusion. These results are expected to reveal the adsorption and diffusion mechanism of gas in shale organics, which has a great significance for further research.

 Artículos similares

       
 
Cundong Xu, Junjiao Tian, Guoxia Wang, Haidong Lian, Rongrong Wang and Xiaomeng Hu    
The vortices, backflow, and siltation caused by sediment-laden flow are detrimental to the safe and efficient operation of pumping stations. To explore the effects of water?sediment two-phase flow on the velocity field, vorticity field, and sediment dist... ver más
Revista: Water

 
Jie Lu, Jing Luo, Lingling Tian and Ye Tian    
Logistics services are integral to urban economic activity, and delving into the spatial distribution traits and evolutionary pathways of various kinds of logistics service node facilities (LSNF) is markedly valuable for understanding a city?s functional... ver más

 
Pradeep Kumar, Guo-Liang Shih, Bo-Lin Guo, Siva Kumar Nagi, Yibeltal Chanie Manie, Cheng-Kai Yao, Michael Augustine Arockiyadoss and Peng-Chun Peng    
Violent attacks have been one of the hot issues in recent years. In the presence of closed-circuit televisions (CCTVs) in smart cities, there is an emerging challenge in apprehending criminals, leading to a need for innovative solutions. In this paper, t... ver más
Revista: Future Internet

 
Huanxiao Hu, Yufan Lu, Chao Deng, Benqing Gan, Zhongliang Xie, Yuehui Cai and Aikun Chu    
Due to the unique characteristics of sandy soil layers, there is often a coupling effect of multiple grout diffusion patterns in the grouting process, and different slurry diffusion modes may lead to different responses of soil structures. In this study,... ver más
Revista: Buildings

 
Yijia Zhou, Hang Yu, Maohui Luo and Xiang Zhou    
Thermal sensation prediction models can help to evaluate complex thermal environments and guide the environment conditioning strategy. However, most existing models are established basing on the thermal status of the entire human body or local body parts... ver más
Revista: Buildings