Redirigiendo al acceso original de articulo en 19 segundos...
ARTÍCULO
TITULO

Hydrodynamic Characterization of USV Vessels with Innovative SWATH Configuration for Coastal Monitoring and Low Environmental Impact

Stefano Zaghi    
Giulio Dubbioso    
Riccardo Broglia    
Roberto Muscari    

Resumen

The high costs associated with the use of research oceanographic vessels and the maturity of the unmanned surface vehicles (USV) makes now possible to develop systems for monitoring coastal areas based on networks of independent USVs. This type of vessels is a valid alternative to conventional vessels, which have a limited mission profile due to their high environmental impact (conventional propulsion systems based on polluting fossil fuels) inhibiting their access to protected coastal regions. Moreover, conventional vessels have high hydrodynamic resistance (limiting the autonomy) producing high levels of noise that can dramatically influence the monitoring equipment shipped: beside the environmental impact reduction, there is also the necessity of low-resistance/low-noise hydrodynamic specification. Consequently, the coastal monitoring (of also protected regions) needs unconventional vessels able to address both the issues related to the environmental impact and the hydrodynamic performance.In this framework, this work aims to characterize the hydrodynamic performance of a system based on USV units able to launch and recover autonomous vehicles of different nature (gliders, AUVs, motor-gliders, wire-guided ROVs), and able to acquire environmental data (in the column water from free-surface to the sea floor), in order to meet the requirements of civil and military applications. The cutting-edge aspects that characterize the USV studied are the hull SWATH type (Small Waterplane Area Twin Hulls) non-conventional, optimized so as to ensure a unique seakeeping and a reduced resistance, along with the propulsion system with propellers in mantle, developed to combine propulsive efficiency and low noise. In the present paper, a SWATH-shaped USV designed for monitoring of protected coastal regions is numerically studied solving the Navier-Stokes equations on the fully appended vessels with several environmental conditions. An accurate hydrodynamic characterization will presented in order to investigate its performances and eventual maneuverability issues.

 Artículos similares

       
 
Aikaterini P. Kyprioti, Alexandros A. Taflanidis, Norberto C. Nadal-Caraballo, Madison C. Yawn and Luke A. Aucoin    
Surrogate models, also referenced as metamodels, have emerged as attractive data-driven, predictive models for storm surge estimation. They are calibrated based on an existing database of synthetic storm simulations and can provide fast-to-compute approx... ver más

 
José Jiménez-Varona and Gabriel Liaño    
The flow at high angles of attack over axisymmetric configurations is not symmetric. The mechanism that triggers the asymmetry may be a combination of a global or hydrodynamic instability (temporal instability) combined with a convective instability (spa... ver más
Revista: Computation

 
Claudia Bonechi, Gabriella Tamasi, Alessandro Donati, Gemma Leone, Marco Consumi, Lorenzo Cangeloni, Vanessa Volpi, Agnese Magnani, Andrea Cappelli and Claudio Rossi    
Hyaluronic acid (HA) and chitosan (CH) are biopolymers that are widely used in many biomedical applications and for cosmetic purposes. Their chemical properties are fundamental to them working as drug delivery systems and improving their synergistic effe... ver más
Revista: Applied Sciences

 
James A. Pollard, Elizabeth K. Christie, Susan M. Brooks and Tom Spencer    
Gravel barriers represent physiographic, hydrographic, sedimentary, and ecological boundaries between inshore and open marine offshore environments, where they provide numerous important functions. The morphosedimentary features of gravel barriers (e.g.,... ver más

 
Taiping Wang and Zhaoqing Yang    
Cook Inlet in Alaska has been identified as a prime site in the U.S. for potential tidal energy development, because of its enormous tidal power potential that accounts for nearly one-third of the national total. As one important step to facilitate tidal... ver más