Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Atmosphere  /  Vol: 9 Núm: 3 Par: March (2018)  /  Artículo
ARTÍCULO
TITULO

Returning Tea Pruning Residue and Its Biochar Had a Contrasting Effect on Soil N2O and CO2 Emissions from Tea Plantation Soil

Aung Zaw Oo    
Shigeto Sudo    
Khin Thuzar Win    
Akira Shibata    
Tomohito Sano and Yuhei Hirono    

Resumen

A laboratory incubation experiment is conducted for 90 days under controlled conditions where either pruning residue or its biochar is applied to determine which application generates the lowest amount of greenhouse gas from tea plantation soil. To study the effect of incorporation depth on soil N2O and CO2 emissions, experiment 1 is performed with three treatments: (1) control; (2) tea pruning residue; and (3) residue biochar mixed with soil from two different depths (0?5 cm and 0?10 cm layers). In experiment 2, only the 0?10 cm soil layer is used to study the effect of surface application of tea pruning residue or its biochar on soil N2O and CO2 emissions compared with the control. The results show that biochar significantly increases soil pH, total C and C/N ratio in both experiments. The addition of pruning residue significantly increases soil total C content, cumulative N2O and CO2 emissions after 90 days of incubation. Converting pruning residue to biochar and its application significantly decreases cumulative N2O emission by 17.7% and 74.2% from the 0?5 cm and 0?10 cm soil layers, respectively, compared to their respective controls. However, biochar addition increases soil CO2 emissions for both the soil layers in experiment 1. Surface application of biochar to soil significantly reduces both N2O and CO2 emissions compared to residue treatment and the control in experiment 2. Our results suggest that converting pruning residue to biochar and its addition to soil has the potential to mitigate soil N2O emissions from tea plantation.

 Artículos similares