Resumen
Water regime was one of the most important driving factors in the formation of wetland landscape and the growth and distribution pattern of wetland vegetation. Currently, research on the relationship between wetland landscape and water regime was mostly focused in autumns and winters in Poyang Lake, and lack of research in springs. Based on the nine high-resolution spring remote sensing images during 2000?2010, the classification characteristics of wetland landscape and spatial distribution pattern of vegetation and their succession trends in Poyang Lake were studied through quantitative interpretation technology and multivariate statistical analysis. Combined with water level fluctuations characteristics of the five monitoring hydrological stations (i.e., Hukou, Xingzi, Duzhan, Tangyin and Kangshan) at the Poyang Lake, the inter-annual and intra-annual water level variations of Poyang Lake were analyzed. The study was aimed to investigate the quantitative effects of water regime on the spring wetland landscape and spatial distribution pattern of vegetation and their succession trends in Poyang Lake. The results showed that: (1) the maximum scope of water levels of the five monitoring stations varied from 8.5 m to 13.57 m, and the water level of Poyang lake showed a downward trend, declining at an average rate of 0.16 m per year during 2000?2010; (2) the total area of the 10 types of the landscapes did not change significantly, which was always maintained at about 3026 km 2 and the total area of vegetation coverage showed increasing trend during 2000?2010 in Poyang Lake, with a maximum area in 2008 and a minimum area in 2010; (3) The water level change was consistent with the area of the lake water, and was inconsistent with the areas of the mudflat, vegetation and land-water transition zone. The highest linear fitting degree with water level was the area of the land-water transition zone, followed by the lake water and vegetation. The results were helpful to further explore the eco-hydrology process and its trend at Poyang Lake wetland, a scientific reference for the maintenance of stable ecosystem functions of the seasonal freshwater lake wetland.