Resumen
This paper proposes a total crop-diagnosis platform (TCP) based on deep learning models in a natural nutrient environment, which collects the weather information based on a farm’s location information, diagnoses the collected weather information and the crop soil sensor data with a deep learning technique, and notifies a farm manager of the diagnosed result. The proposed TCP is composed of 1 gateway and 2 modules as follows. First, the optimized farm sensor gateway (OFSG) collects data by internetworking sensor nodes which use Zigbee, Wi-Fi and Bluetooth protocol and reduces the number of sensor data fragmentation times through the compression of a fragment header. Second, the data storage module (DSM) stores the collected farm data and weather data in a farm central server. Third, the crop self-diagnosis module (CSM) works in the cloud server and diagnoses by deep learning whether or not the status of a farm is in good condition for growing crops according to current weather and soil information. The TCP performance shows that the data processing rate of the OFSG is increased by about 7% compared with existing sensor gateways. The learning time of the CSM is shorter than that of the long short-term memory models (LSTM) by 0.43 s, and the success rate of the CSM is higher than that of the LSTM by about 7%. Therefore, the TCP based on deep learning interconnects the communication protocols of various sensors, solves the maximum data size that sensor can transfer, predicts in advance crop disease occurrence in an external environment, and helps to make an optimized environment in which to grow crops.