Redirigiendo al acceso original de articulo en 19 segundos...
ARTÍCULO
TITULO

An analytical framework to model uncertainty in urban network dynamics using Macroscopic Fundamental Diagrams

Xueyu (Shirley) Gao    
Vikash V. Gayah    

Resumen

Recent studies have proposed using well-defined relationships between network productivity and accumulation?otherwise known as Network or Macroscopic Fundamental Diagrams (MFDs)?to model the dynamics of large-scale urban traffic networks. This provides a computationally efficient way to study these complex systems and facilitates the design and control of novel large-scale traffic management strategies. However, empirical and simulation evidence suggests that MFDs are rarely well-defined. Instead, they exhibit large amounts of scatter and uncertainty, which suggests a range of network productivities may be observed for any given accumulation. This paper examines the impact of this MFD uncertainty and uncertainty in aggregate-level vehicle demands (i.e., vehicle exit and entry rates) on large-scale network behavior. It is shown that these uncertainties can cause fundamentally different aggregate network behaviors than would be expected if they were ignored, including unexpected congestion or gridlock. An analytically derived Markov Chain framework is proposed that can be used to model aggregate network dynamics while explicitly accounting for these types of uncertainties, which are very likely to arise on realistic urban networks. Comparison between the analytical predictions and numerical simulations suggest that the Markov Chain framework can accurately predict traffic dynamics under uncertainty for both single- and multi-region networks. Since this framework relies on the careful discretization of both time and accumulation within individual regions within a network, guidance is also provided on how to best select these discretization parameters for the most accurate results.

 Artículos similares

       
 
Vinh Pham, Maxim Tyan, Tuan Anh Nguyen and Jae-Woo Lee    
Multi-fidelity surrogate modeling (MFSM) methods are gaining recognition for their effectiveness in addressing simulation-based design challenges. Prior approaches have typically relied on recursive techniques, combining a limited number of high-fidelity... ver más
Revista: Aerospace

 
Janja Svetina, Joerg Prestor, Brigita Jamnik, Primo? Auersperger and Mihael Brencic    
Urban areas can significantly alter the quality status of aquifers if appropriate strategies to prevent and detect groundwater contamination are not implemented in time. The prevention of groundwater contamination should be a priority due to its potentia... ver más
Revista: Water

 
Zhihui Tian, Ruoyi Zhang, Lili Wu, Yongji Wang, Jinjin Yang and Di Cao    
Climate change, population growth, and socio-economic transformations present multifaceted challenges to the water resource systems in the four major river basins of Henan Province. Consequently, to gain a comprehensive understanding of water security wi... ver más
Revista: Water

 
Fupeng Liu, Jiandong Ma, Zhongzhi Ye, Lijia Wang, Yu Sun, Jianxing Yu, Yuliang Qin, Dongliang Zhang, Wengang Cai and Hao Li    
The reliability of liquefied natural gas (LNG) storage tanks is an important factor that must be considered in their structural design. Concrete is a core component of LNG storage tanks, and the geometric uncertainty of concrete aggregate material has a ... ver más

 
Francisca Barros, Beatriz Rodrigues, José Vieira and Filipe Portela    
Due to the amount of data emerging, it is necessary to use an online analytical processing (OLAP) framework capable of responding to the needs of industries. Processes such as drill-down, roll-up, three-dimensional analysis, and data filtering are fundam... ver más
Revista: Information