Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Water  /  Vol: 8 Núm: 10 Par: 0 (2016)  /  Artículo
ARTÍCULO
TITULO

Long-Term Trends and Temporal Synchrony in Plankton Richness, Diversity and Biomass Driven by Re-Oligotrophication and Climate across 17 Danish Lakes

Korhan Özkan    
Erik Jeppesen    
Thomas A. Davidson    
Rikke Bjerring    
Liselotte S. Johansson    
Martin Søndergaard    
Torben L. Lauridsen    
Jens-Christian Svenning    

Resumen

A two-decade (1989?2008) time series of lake phyto- and zooplankton, water characteristics and climate in 17 Danish lakes was analysed to examine the long term changes and the effects of lake restoration efforts. The analyses of the pair-wise correlations across time series revealed a strong synchrony in climatic variables among the lakes. A significant, but weak increase in air temperature was observed and resulted in a corresponding increase in surface water temperature only in summer. Lake physico-chemical variables had weaker synchrony than climatic variables. Synchrony in water temperature and stratification was stronger than lake chemistry as the former is mostly affected by atmospheric energy flux. Synchrony in the taxonomic richness of the plankton groups and phytoplankton biomass was apparent, to a similar degree as observed for lake chemistry. The synchrony and the temporal trends in lake chemistry and plankton were more pronounced for the lakes with strong re-oligotrophication. Phytoplankton biomass decreased and plankton richness increased in these lakes, with a shift from Chlorophyta dominance towards more heterogeneous phytoplankton communities. Notably, a widespread significant positive trend in plankton richness was observed not only in lakes with strong re-oligotrophication but across all lakes. The widespread increase in plankton richness coincided with widespread decrease in phosphate and total nitrogen concentrations, as well as with the trends in climate indicating a likely joint effect of nutrient reduction and climate in driving lake plankton. However, temporal changes and synchrony as well as the recovery of richness and composition of lake plankton more coherently corresponded with the nutrient loading reduction across the Danish landscape, while the role of climate control of the lake plankton was less pronounced.

 Artículos similares

       
 
Suhee Jo, Ryeonggu Kwon and Gihwon Kwon    
GitHub serves as a platform for collaborative software development, where contributors engage, evolve projects, and shape the community. This study presents a novel approach to analyzing GitHub activity that departs from traditional methods. Using Discre... ver más
Revista: Applied Sciences

 
Nuno Marques de Almeida and Adolfo Crespo    
The frequency and severity of natural or human-induced disaster events, such as floods, earthquakes, hurricanes, fires, pandemics, hazardous material spills, groundwater contamination, structural failures, explosions, etc., as well as their impacts, have... ver más
Revista: Applied Sciences

 
Jingshi Liu, Guligena Halimulati, Yuting Liu, Jianxin Mu and Namaiti Tuoheti    
The climatic warming-induced shrinking of permafrost currently encompasses 65% of alpine areas in North China, where a large population relies on its water and land resources. With increasing recognition of the economic and ecological impacts of permafro... ver más
Revista: Water

 
Christy M. Caudill, Peter L. Pulsifer, Romola V. Thumbadoo and D. R. Fraser Taylor    
The halfway point for the implementation of the United Nations Sustainable Development Goals (SDGs) was marked in 2023, as set forth in the 2030 Agenda. Geospatial technologies have proven indispensable in assessing and tracking fundamental components of... ver más

 
Stefanos Stefanidis, Dimitra Rossiou and Nikolaos Proutsos    
Drought is a significant natural hazard with widespread socioeconomic and environmental impacts. This study investigated the long-term drought characteristics in a Mediterranean oak forest ecosystem using the Standardized Precipitation Evapotranspiration... ver más
Revista: Hydrology