Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Environments  /  Vol: 2 Núm: 1 Par: March (2015)  /  Artículo
ARTÍCULO
TITULO

Effects of Climate Change on Urban Rainwater Harvesting in Colombo City, Sri Lanka

Kwong Fai A. Lo and Suranjith Bandara Koralegedara    

Resumen

Cities are becoming increasingly vulnerable to water-related issues due to rapid urbanization, installation of complex infrastructure and changes in rainfall patterns. This study aims at assessing the impacts of climate change on rainwater harvesting systems (RWH) in the tropical urban city, Colombo, Sri Lanka. The future climate change projections are downscaled from global circulation models to the urban catchment scale using the Long Ashton Research Station Weather Generator (LARS-WG), described in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), coupled with Inter Comparison Project (CMIP3) model results. Historical rainfall data from 1981?2010 is used to simulate long-term future rainfall data from 2011?2099. The percentage change of the rainfall is calculated. The rainfall patterns are analyzed based on the daily, monthly, seasonal and annual time scales. Water requirements are calculated based on the selected scenario types. Rainfall and water demand data are incorporated into a water balance model. Climate change impacts for the selected RWH scenarios are calculated based on the water security analysis for each scenario. Analysis of the future rainfall data of Colombo reveals that several extreme weather events with very heavy rainfall may occur in the future. However, the frequency of these big events may not occur too often. Most of the selected global circulation models (GCMs) in this study predict that there will be more rainfall towards the end of this century (2080-2099). Residential RWH systems will be more affected than non-residential systems. RWH systems in Colombo should include potential future climate changes in their future design and planning and be prepared for excess runoff and additional measures against potential overflow and urban floods.

Palabras claves

 Artículos similares

       
 
Yan Zhang, Bingfei Chu, Tianming Huang, Shengwen Qi, Michael Manga, Huai Zhang, Bowen Zheng and Yuxin Zhou    
Carbon geological storage (CGS) is an important global practice implemented to mitigate the effects of CO2 emissions on temperature, climate, sea level, and biodiversity. The monitoring of CGS leakage and the impact of storage on hydrogeological properti... ver más
Revista: Water

 
Peiyue Li and Jianhua Wu    
This editorial introduces the Special Issue titled ?Water Resources and Sustainable Development,? underscoring the critical need for sustainable management of water resources in light of increasing demand, climate change impacts, and pollution. The issue... ver más
Revista: Water

 
Dayana Carolina Chalá, Edgar Quiñones-Bolaños and Mehrab Mehrvar    
Land subsidence is a global challenge that enhances the vulnerability of aquifers where climate change and driving forces are occurring simultaneously. To comprehensively analyze this issue, integrated modeling tools are essential. This study advances th... ver más
Revista: Water

 
Chunjian Lyu, Jianglong Cui, Fangyuan Jin, Xiaojie Li and Yaning Xu    
The riparian zone has a proven ability to reduce agricultural nonpoint-source nitrogen pollution. However, prior studies have only assessed nitrification and denitrification and their influencing factors, such as hydrology, climate, vegetation, and soil ... ver más
Revista: Water

 
Dimitrios Kalfas, Stavros Kalogiannidis, Olympia Papaevangelou and Fotios Chatzitheodoridis    
The complex interplay between land use planning, water resource management, and the effects of global climate change continues to attract global attention. This study assessed the connection between land use planning, water resources, and global climate ... ver más
Revista: Water