Resumen
Severe watershed degradation continues to occur in the tropical regions of southern Africa. This has raised interest to harness and manipulate the potential of the watershed resources for human benefit as the populations grow. Songwe River is one such degrading watershed causing biennial flooding among other problems. In this study, climatic, land use, topographic and physiographic properties were assembled for this watershed and used in a process-based Geographical Information System (GIS) with the aim of determining the hydrological sediment potential of Songwe River watershed and quantifying possibilities of reservoir sedimentation. The study further aimed at determining the critical sediment generating areas for prioritized conservation management and the relationship between the increasing flood events in the floodplains and the rainfall trends. Based on hydrological runoff processes using the Pan-European Soil Erosion Risk Assessment (PESERA) model, the estimated amount of sediment transported downstream is potentially huge. Most of the sediment generation was established to be occurring in the upper sub-basin and specifically from built up village and degraded natural land. These trends have not only caused the increased flooding events in the lower sub-basin, but also pose a great sustainability risk of sedimentation to the proposed reservoir.