Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Water  /  Vol: 10 Núm: 10 Par: October (2018)  /  Artículo
ARTÍCULO
TITULO

Monthly Streamflow Forecasting Using EEMD-Lasso-DBN Method Based on Multi-Scale Predictors Selection

 Artículos similares

       
 
Ying Ouyang, John A. Stanturf, Marcus D. Williams, Evgeniy Botmann and Palle Madsen    
Estimation of hydrological processes is critical to water resource management, water supply planning, ecological protection, and climate change impact assessment. Mountains in Central Asia are the major source of water for rivers and agricultural practic... ver más
Revista: Hydrology

 
Pouya Hosseinzadeh, Ayman Nassar, Soukaina Filali Boubrahimi and Shah Muhammad Hamdi    
Streamflow prediction plays a vital role in water resources planning in order to understand the dramatic change of climatic and hydrologic variables over different time scales. In this study, we used machine learning (ML)-based prediction models, includi... ver más
Revista: Hydrology

 
Ravindu Panditharathne, Miyuru B. Gunathilake, Imiya M. Chathuranika, Upaka Rathnayake, Mukand S. Babel and Manoj K. Jha    
Rainfall is one of the dominating climatic parameters that affect water availability. Trend analysis is of paramount significance to understand the behavior of hydrological and climatic variables over a long timescale. The main aim of the present study w... ver más
Revista: Hydrology

 
Hanyong Lee, Min Suh Chae, Jong-Yoon Park, Kyoung Jae Lim and Youn Shik Park    
Changes in rainfall pattern and land use have caused considerable impacts on the hydrological behavior of watersheds; a Long-Term Hydrologic Impact Analysis (L-THIA) model has been used to simulate such variations. The L-THIA model defines curve number a... ver más

 
Baydaa Abdul Kareem, Salah L. Zubaidi, Hussein Mohammed Ridha, Nadhir Al-Ansari and Nabeel Saleem Saad Al-Bdairi    
Accurate streamflow prediction is significant when developing water resource management and planning, forecasting floods, and mitigating flood damage. This research developed a novel methodology that involves data pre-processing and an artificial neural ... ver más
Revista: Hydrology