Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Water  /  Vol: 8 Núm: 8 Par: 1 (2016)  /  Artículo
ARTÍCULO
TITULO

Effects of Model Spatial Resolution on Ecohydrologic Predictions and Their Sensitivity to Inter-Annual Climate Variability

Kyongho Son    
Christina Tague    
Carolyn Hunsaker    

Resumen

The effect of fine-scale topographic variability on model estimates of ecohydrologic responses to climate variability in California?s Sierra Nevada watersheds has not been adequately quantified and may be important for supporting reliable climate-impact assessments. This study tested the effect of digital elevation model (DEM) resolution on model accuracy and estimates of the sensitivity of ecohydrologic responses to inter-annual climate variability. The Regional Hydro-Ecologic Simulation System (RHESSys) was applied to eight headwater, high-elevation watersheds located in the Kings River drainage basin. Each watershed was calibrated with measured snow depth (or snow water equivalent) and daily streamflow. Modeled streamflow estimates were sensitive to DEM resolution, even with resolution-specific calibration of soil drainage parameters. For model resolutions coarser than 10 m, the accuracy of streamflow estimates largely decreased. Reduced model accuracy was related to the reduction in spatial variance of a topographic wetness index with coarser DEM resolutions. This study also found that among the long-term average ecohydrologic estimates, summer flow estimates were the most sensitive to DEM resolution, and coarser resolution models overestimated the climatic sensitivity for evapotranspiration and net primary productivity. Therefore, accounting for fine-scale topographic variability in ecohydrologic modeling may be necessary for reliably assessing climate change effects on lower-order Sierra Nevada watersheds (=2.3 km2).

 Artículos similares

       
 
Zhike Zou, Longcang Shu, Xing Min and Esther Chifuniro Mabedi    
The artificial recharge of stormwater is an effective approach for replenishing aquifer and reduce urban waterlogging, but prone to clogging by suspended particles (SP) that are highly heterogeneously sized. In this paper, the transport and deposition of... ver más
Revista: Water

 
Xudong Ma, Lu Wang, Ruihua Nie, Kejun Yang and Xingnian Liu    
This paper conducted an undistorted scaled model test (geometric scale ?L = 1:80; the others are derived scales based on Froude similitude) of a 1.3 km-long river reach in Shiting River, China, investigating the impacts of the grade control datum (GCD, d... ver más
Revista: Water

 
Ying-Qing Guo, Meng Li, Yang Yang, Zhao-Dong Xu and Wen-Han Xie    
As a typical intelligent device, magnetorheological (MR) dampers have been widely applied in vibration control and mitigation. However, the inherent hysteresis characteristics of magnetic materials can cause significant time delays and fluctuations, affe... ver más
Revista: Information

 
Fengge Li, Chen Chen and Zehui Xiang    
To investigate the effects of concrete canvas (CC) and carbon fiber reinforced plastic (CFRP) reinforcement on the mechanical properties of corroded reinforced concrete columns (compressive strength, flexure strength, strength of extension, and so on), 4... ver más
Revista: Buildings

 
Zhengwei Wang, Haitao Gu, Jichao Lang and Lin Xing    
This study verifies the effects of deployment parameters on the safe separation of Autonomous Underwater Vehicles (AUVs) and mission payloads. The initial separation phase is meticulously modeled based on computational fluid dynamics (CFD) simulations em... ver más