Resumen
Today?s F1 hybrid cars are based on very similar power units made up of about the same internal combustion engine (ICE) and energy recovery system (ERS). Because of restrictive design rules permitting too much fuel per race, the internal combustion engine is not particularly fuel efficient. The methodology is based on lap time simulations and telemetry data for a F1 H car covering one lap of the Monaco Grand Prix. The methodology is based on lap time simulations and telemetry data for a F1 H car covering one lap of the Monaco Grand Prix. The present limit of 100 kg of fuel per race is excessive. The low power energy recovery system is used strategically rather than fuel savings recovering very little braking energy. The 4 MJ of storable energy is used only when it is strategically needed. The 2 MJ of recoverable energy allowed per lap are almost never collected. To return to be technically attractive, F1 should permit much more freedom in the definition of the ICE and the ERS. As the goal of the rules should be lowering the fuel consumption while keeping technical and sporting interest high, the best solution is more freedom to achieve the fastest car within more stringent limits of fuel economy. A real limit to the total fuel consumption for a race track like Monte Carlo should be not more than 80 kg of fuel. This would translate in more energy recovery to the ERS per lap and better fuel efficiency of the ICE and will certainly help more the design of passenger cars.