Resumen
The Casposo District is located in the Cordillera Frontal, in the center-west of San Juan Province, Argentina. It is characterized by the presence of a low sulfidation epithermal system hosted in volcanic rocks of the Choiyoi Group, where the Mercado-Kamila and Julieta are the more important sectors, concentrating the largest resources of the district. Julieta consists of a quartz-calcite (Au-Ag) vein system, with colloform-banded and brecciated textures, as well as lattice-bladed replacements. In this study, a detailed analysis of the mineralogy and textures of the Julieta Vein system identifies 9 pulses grouped into 4 main events, 3 hydrothermal and 1 tectonic-hydrothermal. Pulses P1, P2 and P3 are barren and carbonated in nature. Pulses P4 and P5A are of chalcedony composition with a colloform-banded texture, where the last one shows cream-colored adularia bands and black ginguro bands, to which high Au (5,5 g/t) and Ag (52 g/t) values are associated. Pulse P5B is of silicic nature as well, although with a brecciated texture, whereas pulse P6 is siliceous carbonate. The composition of these pulses migrates to carbonates represented by P7 and P8, both of brecciated texture. Finally, the system closes with the tectonic-hydrothermal pulse P9. Julieta Vein has a dominant NW-SE strike, with minor subveins of E-W and N-S orientation, that can be divided into 3 segments: North, Central and South. The greater thicknesses, as well as the greater inclinations and high precious metals values are associated with inflections between the 3 segments. Concerning the ore shoots geometry, the structure has a main lithologically controlled subhorizontal ore shoot, while the secondary subvertical ore shoots are structurally controlled. Differences in the rheology of the host rock would control the vein morphology, forming a vertical jog. Factors such as the evolution of the mineralizing events, the vein morphology, and the precious metals distribution, allowed us to identify the importance of the lithological and structural controls in the development of mineralization in the Julieta Vein.