Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

Federated Learning Framework for IID and Non-IID datasets of Medical Images

Kavitha Srinivasan    
Sainath Prasanna    
Rohit Midha    
Shraddhaa Mohan    

Resumen

Advances have been made in the field of Machine Learning showing that it is an effective tool that can be used for solving real world problems. This success is hugely attributed to the availability of accessible data which is not the case for many fields such as healthcare, a primary reason being the issue of privacy. Federated Learning (FL) is a technique that can be used to overcome the limitation of availability of data at a central location and allows for training machine learning models on private data or data that cannot be directly accessed. It allows the use of data to be decoupled from the governance (or control) over data. In this paper, we present an easy-to-use framework that provides a complete pipeline to let researchers and end users train any model on image data from various sources in a federated manner. We also show a comparison in results between models trained in a federated fashion and models trained in a centralized fashion for Independent and Identically Distributed (IID) and non IID datasets. The Intracranial Brain Hemorrhage dataset and the Pneumonia Detection dataset provided by the Radiological Society of North America (RSNA) are used for validating the FL framework and comparative analysis.

 Artículos similares

       
 
Mohamed Chetoui and Moulay A. Akhloufi    
The simultaneous advances in deep learning and the Internet of Things (IoT) have benefited distributed deep learning paradigms. Federated learning is one of the most promising frameworks, where a server works with local learners to train a global model. ... ver más
Revista: Computers

 
Ali Abbasi Tadi, Saroj Dayal, Dima Alhadidi and Noman Mohammed    
The vulnerability of machine learning models to membership inference attacks, which aim to determine whether a specific record belongs to the training dataset, is explored in this paper. Federated learning allows multiple parties to independently train a... ver más
Revista: Information

 
Yankai Lv, Haiyan Ding, Hao Wu, Yiji Zhao and Lei Zhang    
Federated learning (FL) is an emerging decentralized machine learning framework enabling private global model training by collaboratively leveraging local client data without transferring it centrally. Unlike traditional distributed optimization, FL trai... ver más
Revista: Applied Sciences

 
Yingying Liang, Peng Zhao and Yimeng Wang    
Deep learning has undergone significant progress for machinery fault diagnosis in the Industrial Internet of Things; however, it requires a substantial amount of labeled data. The lack of sufficient fault samples in practical applications remains a chall... ver más
Revista: Applied Sciences

 
Riccardo Lazzarini, Huaglory Tianfield and Vassilis Charissis    
The number of Internet of Things (IoT) devices has increased considerably in the past few years, resulting in a large growth of cyber attacks on IoT infrastructure. As part of a defense in depth approach to cybersecurity, intrusion detection systems (IDS... ver más
Revista: AI