Resumen
The interaction of substrates from ceramics, beryllium, and carbopyroceram with the electrolyte for the electrodeposition of niobium coatings was investigated. The corrosion resistance of spherical ceramic and beryllium samples with the protective molybdenum films obtained by magnetron sputtering was studied. The exfoliation of molybdenum film from ceramics and beryllium samples was observed after the experiments due to the interaction of substrates with the melt. It was found that the carbopyroceram did not corrode in the niobium containing melt and this material was chosen as the substrate for the electrodeposition of superconducting niobium coatings. The influence of the oxide ions on the electrochemical behavior of niobium complexes in the NaCl?KCl?NaF?K2NbF7 melt was studied. A special form of the cathode was constructed for the electrodeposition of niobium coatings on spherically shaped substrates. Electrodeposition of the niobium coatings on spheres 10 mm in diameter manufactured from carbopyroceram was carried out at 750 °C with the cathodic current density of 5 × 10-3?2 × 10-2 A·cm-2 and the electrolysis time of 8?12 h. Influence of the cathodic current density on the microstructure of niobium coatings was studied. The roughness, nonsphericity, and superconductive properties of niobium coatings were determined.