Resumen
The medium and high temperature tribological behavior of different iron aluminide thermal spray coatings was investigated. Several powders synthesized through different routes (ball milling, self-decomposition, and self-propagating high-temperature sintering (SHS)) were evaluated. High heterogeneity of conventional High Velocity Oxygen Fuel (HVOF) coatings plays a vital role in their sliding performance, but as long as their integrity is preserved under high temperature oxidizing conditions, the wear rates are found to be acceptable, as it occurs in the case of ball milled Fe-40Al (at.%) powder. The friction phenomenon and wear mechanisms were analyzed in detail through the wear track morphology, contact surface, and friction coefficients. The occurrence of brittle phases in the sprayed coatings, which are also present when tested at high temperatures, appeared to be crucial in accelerating the coating failure.