Resumen
Tourmaline is a ring borosilicate with unique pyro-electricity and piezoelectricity values. Non-gem tourmaline is usually used as an environmental material. The short-term effects of ultrafine tourmaline particles on nitrogen removal performs microbial population dynamics. Key functional species in a sequencing batch reactor were investigated at 9 ± 1 °C. The investigation results showed that 1 g·L−1 ultrafine tourmaline particles could resist the effect of temperature shock on the metabolism of NH4+-N and were beneficial to the restoration of the metabolism capacity of NH4+-N. 1 g·L−1 ultrafine tourmaline particles, which increased the oxidation rate of NH4+-N in the aerobic phase, the formation rate of NO3−-N in the aerobic phase, and the denitrification rate in the hypoxia phase at low temperatures. However, the community richness or diversities were not changed after short-term exposure to 1 g·L−1 ultrafine tourmaline particles at low temperatures and 1 g·L−1 ultrafine tourmaline particles could not change the relative abundances of functional microbes except nitrite oxidizing bacteria.