Resumen
In the current work, a novel method is presented for generating rules for data classification as well as for regression problems. The proposed method generates simple rules in a high-level programming language with the help of grammatical evolution. The method does not depend on any prior knowledge of the dataset; the memory it requires for its execution is constant regardless of the objective problem, and it can be used to detect any hidden dependencies between the features of the input problem as well. The proposed method was tested on a extensive range of problems from the relevant literature, and comparative results against other machine learning techniques are presented in this manuscript.