REVISTA
AI

   
Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  AI  /  Vol: 1 Par: 2 (2020)  /  Artículo
ARTÍCULO
TITULO

Artificial Intelligence Algorithms for Discovering New Active Compounds Targeting TRPA1 Pain Receptors

Dragos Paul Mihai    
Cosmin Trif    
Gheorghe Stancov    
Denise Radulescu and George Mihai Nitulescu    

Resumen

Transient receptor potential ankyrin 1 (TRPA1) is a ligand-gated calcium channel activated by cold temperatures and by a plethora of electrophilic environmental irritants (allicin, acrolein, mustard-oil) and endogenously oxidized lipids (15-deoxy-?12, 14-prostaglandin J2 and 5, 6-eposyeicosatrienoic acid). These oxidized lipids work as agonists, making TRPA1 a key player in inflammatory and neuropathic pain. TRPA1 antagonists acting as non-central pain blockers are a promising choice for future treatment of pain-related conditions having advantages over current therapeutic choices A large variety of in silico methods have been used in drug design to speed up the development of new active compounds such as molecular docking, quantitative structure-activity relationship models (QSAR), and machine learning classification algorithms. Artificial intelligence methods can significantly improve the drug discovery process and it is an attractive field that can bring together computer scientists and experts in drug development. In our paper, we aimed to develop three machine learning algorithms frequently used in drug discovery research: feedforward neural networks (FFNN), random forests (RF), and support vector machines (SVM), for discovering novel TRPA1 antagonists. All three machine learning methods used the same class of independent variables (multilevel neighborhoods of atoms descriptors) as prediction of activity spectra for substances (PASS) software. The model with the highest accuracy and most optimal performance metrics was the random forest algorithm, showing 99% accuracy and 0.9936 ROC AUC. Thus, our study emphasized that simpler and robust machine learning algorithms such as random forests perform better in correctly classifying TRPA1 antagonists since the dimension of the dependent variables dataset is relatively modest.

 Artículos similares

       
 
Kevin Mallinger and Ricardo Baeza-Yates    
The continuous fusion of artificial intelligence (AI) and autonomous farming machinery (e.g., drones and field robots) provides a significant shift in the daily work experience of farmers. Faced with new technological developments, many risks and opportu... ver más
Revista: Applied Sciences

 
Mariana Lourenço, Teresa Arrufat, Elena Satorres, Sara Maderuelo, Blanca Novillo-Del Álamo, Stefano Guerriero, Rodrigo Orozco and Juan Luis Alcázar    
(1) Background: Accurate preoperative diagnosis of ovarian masses is crucial for optimal treatment and postoperative outcomes. Transvaginal ultrasound is the gold standard, but its accuracy depends on operator skill and technology. In the absence of expe... ver más
Revista: Applied Sciences

 
Jiwun Yoon, Sang-Yong Lee and Ji-Yong Lee    
Humans share a similar body structure, but each individual possesses unique characteristics, which we define as one?s body type. Various classification methods have been devised to understand and assess these body types. Recent research has applied artif... ver más
Revista: Applied Sciences

 
Rola R. Hassan, Manar Abu Talib, Fikri Dweiri and Jorge Roman    
Implementing the European Foundation for Quality Management (EFQM) business excellence model in organizations is time- and cost-consuming. The integration of artificial intelligence (AI) into the EFQM business excellence model is a promising approach to ... ver más
Revista: Applied Sciences

 
J. D. Tamayo-Quintero, J. B. Gómez-Mendoza and S. V. Guevara-Pérez    
Objective: This study aims to introduce and assess a novel AI-driven tool developed for the classification of orthodontic arch shapes into square, ovoid, and tapered categories. Methods: Between 2016 and 2019, we collected 450 digital dental models. Appl... ver más
Revista: Applied Sciences