Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Aerospace  /  Vol: 9 Par: 12 (2022)  /  Artículo
ARTÍCULO
TITULO

Large Eddy Simulation of Combustion for High-Speed Airbreathing Engines

Christer Fureby    
Guillaume Sahut    
Alessandro Ercole and Thommie Nilsson    

Resumen

Large Eddy Simulation (LES) has rapidly developed into a powerful computational methodology for fluid dynamic studies, between Reynolds-Averaged Navier?Stokes (RANS) and Direct Numerical Simulation (DNS) in both accuracy and cost. High-speed combustion applications, such as ramjets, scramjets, dual-mode ramjets, and rotating detonation engines, are promising propulsion systems, but also challenging to analyze and develop. In this paper, the building blocks needed to perform LES of high-speed combustion are reviewed. Modelling of the unresolved, subgrid terms in the filtered LES equations is highlighted. The main families of combustion models are presented, focusing on finite-rate chemistry models. The density-based finite volume method and the reaction mechanisms commonly employed in LES of high-speed H2-air combustion are briefly reviewed. Three high-speed combustor applications are presented: an experiment of supersonic flame stabilization behind a bluff body, a direct connect facility experiment as a transition case from ramjet to scramjet operation mode, and the STRATOFLY MR3 Small-Scale Flight Experiment. Several combinations of turbulence and combustion models are compared. Comparisons with experiments are also provided when available. Overall, the results show good agreement with experimental data (e.g., shock train, mixing, wall heat flux, transition from ramjet to scramjet operation mode).

 Artículos similares

       
 
Lakshmi Narayana Phaneendra Peri, Antonella Ingenito and Paolo Teofilatto    
The goal of this paper is to investigate the aerodynamic and aerothermodynamic behavior of the Schiaparelli capsule after the deployment of a supersonic disk-gap-band (DGB) parachute during its re-entry phase into the Martian atmosphere. The novelty of t... ver más
Revista: Aerospace

 
Baoling Cui and Mingyu Shi    
Centrifugal pumps are essential fluid transfer devices in marine engineering. As the two most critical components of a centrifugal pump, the dynamic?static interference between the volute and the impeller makes the flow near the cutwater highly unstable,... ver más

 
Omkar Walvekar and Satyanarayanan Chakravarthy    
A conceptual framework is presented to determine the improvement in the aerodynamic performance of a canard aircraft fitted with distributed propellers along its main wing. A preliminary study is described with four airframe?propeller configurations pred... ver más
Revista: Aerospace

 
Arvid Åkerblom, Martin Passad, Alessandro Ercole, Niklas Zettervall, Elna J. K. Nilsson and Christer Fureby    
With growing interest in sustainable civil supersonic and hypersonic aviation, there is a need to model the combustion of alternative, sustainable jet fuels. This work presents numerical simulations of several related phenomena, including laminar flames,... ver más
Revista: Aerospace

 
Kangshen Xiang, Weijie Chen, Siddiqui Aneeb and Weiyang Qiao    
Future UHBR (Ultra-High Bypass-Ratio) engines might cause serious ?turbine noise storms? but, at present, turbine noise prediction capability is lacking. The large turning angle of the turbine blade is the first major factor deserving special attention. ... ver más
Revista: Aerospace