Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Aerospace  /  Vol: 7 Par: 12 (2020)  /  Artículo
ARTÍCULO
TITULO

Traffic Network Identification Using Trajectory Intersection Clustering

Ingrid Gerdes and Annette Temme    

Resumen

The current airspace route system consists mainly of pre-defined routes with a low number of intersections to facilitate air traffic controllers to oversee the traffic. Our aim is a method to create an artificial and reliable route network based on planned or as-flown trajectories. The application possibilities of the resulting network are manifold, reaching from the assessment of new air traffic management (ATM) strategies or historical data to a basis for simulation systems. Trajectories are defined as sequences of common points at intersections with other trajectories. All common points of a traffic sample are clustered, and, after further optimization, the cluster centers are used as nodes in the new main-flow network. To build almost-realistic flight trajectories based on this network, additional parameters such as speed and altitude are added to the nodes and the possibility to take detours into account to avoid congested areas is introduced. As optimization criteria, the trajectory length and the structural complexity of the main-flow system are used. Based on these criteria, we develop a new cost function for the optimization process. In addition, we show how different traffic situations are covered by the network. To illustrate the capabilities of our approach, traffic is exemplarily divided into separate classes and class-dependent parameters are assigned. Applied to two real traffic scenarios, the approach was able to emulate the underlying route systems with a difference in median trajectory length of 0.2%, resp. 0.5% compared to the original routes.

 Artículos similares

       
 
Wen Tian, Xuefang Zhou, Jianan Yin, Yuchen Li and Yining Zhang    
The complex layout of the airport surface, coupled with interrelated vehicle behaviors and densely mixed traffic flows, frequently leads to operational conflict risks. To address this issue, research was conducted on the recognition of characteristics an... ver más
Revista: Aerospace

 
Chenglin Yang, Dongliang Xu and Xiao Ma    
Due to the increasing severity of network security issues, training corresponding detection models requires large datasets. In this work, we propose a novel method based on generative adversarial networks to synthesize network data traffic. We introduced... ver más
Revista: Applied Sciences

 
?tefan Bila?co and Titus-Cristian Man    
On a global scale, traffic incidents are a leading cause of mortality and material damage. Romania exhibits the highest rate of road traffic fatalities both in the European Union and worldwide, requiring a comprehensive examination of its overall influen... ver más
Revista: Applied Sciences

 
Sungwon Moon, Seolwon Koo, Yujin Lim and Hyunjin Joo    
With recent technological advancements, the commercialization of autonomous vehicles (AVs) is expected to be realized soon. However, it is anticipated that a mixed traffic of AVs and human-driven vehicles (HVs) will persist for a considerable period unti... ver más
Revista: Applied Sciences

 
Zengyu Cai, Chunchen Tan, Jianwei Zhang, Liang Zhu and Yuan Feng    
As network technology continues to develop, the popularity of various intelligent terminals has accelerated, leading to a rapid growth in the scale of wireless network traffic. This growth has resulted in significant pressure on resource consumption and ... ver más
Revista: Applied Sciences