REVISTA
AI

   
Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  AI  /  Vol: 4 Par: 3 (2023)  /  Artículo
ARTÍCULO
TITULO

Explainable Artificial Intelligence (XAI): Concepts and Challenges in Healthcare

Tim Hulsen    

Resumen

Artificial Intelligence (AI) describes computer systems able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and language translation. Examples of AI techniques are machine learning, neural networks, and deep learning. AI can be applied in many different areas, such as econometrics, biometry, e-commerce, and the automotive industry. In recent years, AI has found its way into healthcare as well, helping doctors make better decisions (?clinical decision support?), localizing tumors in magnetic resonance images, reading and analyzing reports written by radiologists and pathologists, and much more. However, AI has one big risk: it can be perceived as a ?black box?, limiting trust in its reliability, which is a very big issue in an area in which a decision can mean life or death. As a result, the term Explainable Artificial Intelligence (XAI) has been gaining momentum. XAI tries to ensure that AI algorithms (and the resulting decisions) can be understood by humans. In this narrative review, we will have a look at some central concepts in XAI, describe several challenges around XAI in healthcare, and discuss whether it can really help healthcare to advance, for example, by increasing understanding and trust. Finally, alternatives to increase trust in AI are discussed, as well as future research possibilities in the area of XAI.

 Artículos similares

       
 
Romy Müller, Marcel Dürschmidt, Julian Ullrich, Carsten Knoll, Sascha Weber and Steffen Seitz    
Deep neural networks are powerful image classifiers but do they attend to similar image areas as humans? While previous studies have investigated how this similarity is shaped by technological factors, little is known about the role of factors that affec... ver más
Revista: Applied Sciences

 
Fátima Trindade Neves, Manuela Aparicio and Miguel de Castro Neto    
In the rapidly evolving landscape of urban development, where smart cities increasingly rely on artificial intelligence (AI) solutions to address complex challenges, using AI to accurately predict real estate prices becomes a multifaceted and crucial tas... ver más
Revista: Applied Sciences

 
Hamed Taherdoost and Mitra Madanchian    
In recent years, artificial intelligence (AI) has seen remarkable advancements, stretching the limits of what is possible and opening up new frontiers. This comparative review investigates the evolving landscape of AI advancements, providing a thorough e... ver más
Revista: AI

 
SeyedehRoksana Mirzaei, Hua Mao, Raid Rafi Omar Al-Nima and Wai Lok Woo    
Explainable Artificial Intelligence (XAI) evaluation has grown significantly due to its extensive adoption, and the catastrophic consequence of misinterpreting sensitive data, especially in the medical field. However, the multidisciplinary nature of XAI ... ver más
Revista: Information

 
Firas Alghanim, Ibrahim Al-Hurani, Hazem Qattous, Abdullah Al-Refai, Osamah Batiha, Abedalrhman Alkhateeb and Salama Ikki    
Identifying menopause-related breast cancer biomarkers is crucial for enhancing diagnosis, prognosis, and personalized treatment at that stage of the patient?s life. In this paper, we present a comprehensive framework for extracting multiomics biomarkers... ver más
Revista: Algorithms