Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Aerospace  /  Vol: 10 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

Assessment of Asteroid Classification Using Deep Convolutional Neural Networks

Victor Bacu    
Constantin Nandra    
Adrian Sabou    
Teodor Stefanut and Dorian Gorgan    

Resumen

Near-Earth Asteroids represent potential threats to human life because their trajectories may bring them in the proximity of the Earth. Monitoring these objects could help predict future impact events, but such efforts are hindered by the large numbers of objects that pass in the Earth?s vicinity. Additionally, there is also the problem of distinguishing asteroids from other objects in the night sky, which implies sifting through large sets of telescope image data. Within this context, we believe that employing machine learning techniques could greatly improve the detection process by sorting out the most likely asteroid candidates to be reviewed by human experts. At the moment, the use of machine learning techniques is still limited in the field of astronomy and the main goal of the present paper is to study the effectiveness of deep convolutional neural networks for the classification of astronomical objects, asteroids in this particular case, by comparing some of the well-known deep convolutional neural networks, including InceptionV3, Xception, InceptionResNetV2 and ResNet152V2. We applied transfer learning and fine-tuning on these pre-existing deep convolutional networks, and from the results that we obtained, the potential of using deep convolutional neural networks in the process of asteroid classification can be seen. The InceptionV3 model has the best results in the asteroid class, meaning that by using it, we lose the least number of valid asteroids.

 Artículos similares

       
 
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul    
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ... ver más
Revista: Information

 
Salman Ibne Eunus, Shahriar Hossain, A. E. M. Ridwan, Ashik Adnan, Md. Saiful Islam, Dewan Ziaul Karim, Golam Rabiul Alam and Jia Uddin    
Accidents due to defective railway lines and derailments are common disasters that are observed frequently in Southeast Asian countries. It is imperative to run proper diagnosis over the detection of such faults to prevent such accidents. However, manual... ver más
Revista: AI

 
Moiz Hassan, Kandasamy Illanko and Xavier N. Fernando    
Single Image Super Resolution (SSIR) is an intriguing research topic in computer vision where the goal is to create high-resolution images from low-resolution ones using innovative techniques. SSIR has numerous applications in fields such as medical/sate... ver más
Revista: AI

 
Ilia Zaznov, Julian Martin Kunkel, Atta Badii and Alfonso Dufour    
This paper introduces a novel deep learning approach for intraday stock price direction prediction, motivated by the need for more accurate models to enable profitable algorithmic trading. The key problems addressed are effectively modelling complex limi... ver más
Revista: Applied Sciences

 
Myung-Kyo Seo and Won-Young Yun    
The steel industry is typical process manufacturing, and the quality and cost of the products can be improved by efficient operation of equipment. This paper proposes an efficient diagnosis and monitoring method for the gearbox, which is a key piece of m... ver más
Revista: Applied Sciences