Resumen
This paper presents the design and development of a sub-joule micro-Pulsed Plasma Thruster (µPPT) as a possible low-cost propulsion solution for Pocket-Cubes, used to increase its reliability, capability, and lifetime. It is shown that the µPPT successfully met Pocket-Cube design standards and additional requirements using the iterative design method, focused mainly on simplification and improvements to a traditional PPT design, the utilization of commercial-off-the-shelf (COTS) components and 3D printing. The µPPT was designed to operate and be controlled from an Arduino UNO with a main bank energy of 0.118 J to 0.272 J and power consumption of 0.5 W. It was successfully tested for performance and lifetime in a vacuum chamber (-720 mmHg to -96 kPa) with the use of a micro-pendulum test stand and a high-speed camera. The thruster was tested for its designed operation parameters of 3.3 V and 5 V at a pulsed frequency of 0.25/0.5 Hz. The test results showed that the optimal performance of the thruster with an input voltage supply of 5 V at a pulse frequency of 0.5 Hz, achieved a minimal impulse bit of 0.698 µNs and thrust range of 0.349~1.071 µN. A comparison to the STRaND-1 3U CubeSat?s PPT performance data showed that the developed µPPT is a competitive propulsion solution, as it achieved more thrust with a similar minimal impulse bit, using only one-third of the power consumption. During the lifetime testing, the µPPT was able to produce 1980 shots.