Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Aerospace  /  Vol: 9 Par: 2 (2022)  /  Artículo
ARTÍCULO
TITULO

Numerical Investigation and Parameter Sensitivity Analysis on Flow and Heat Transfer Performance of Jet Array Impingement Cooling in a Quasi-Leading-Edge Channel

Lei Xi    
Jianmin Gao    
Liang Xu    
Zhen Zhao    
Qicheng Ruan and Yunlong Li    

Resumen

In this study, numerical simulations were carried out to investigate the flow and heat transfer characteristics of jet array impingement cooling in the quasi-leading-edge channel of gas turbine blades. The influence laws of Reynolds number (Re, 10,000 to 50,000), hole diameter-to-impingement spacing ratio (d/H, 0.5 to 0.9), hole spacing-to-impingement spacing ratio (S/H, 2 to 6), and Prandtl number (Pr, 0.690 to 0.968) on flow performance, heat transfer performance, and comprehensive thermal performance were examined, and the corresponding empirical correlations were fitted. The results show that increasing the d/H and reducing the S/H can effectively reduce the pressure loss coefficient in the quasi-leading-edge channel. Increasing the Re, reducing the d/H, and increasing the S/H can effectively enhance the heat transfer effect of the target wall. When d/H = 0.6 at lower Reynolds numbers and S/H = 5 at higher Reynolds numbers, the comprehensive thermodynamic coefficient reaches its maximum values. The average Nusselt numbers and comprehensive thermal coefficients of the quasi-leading-edge channel for steam cooling are both higher than those for air cooling. The pressure loss coefficient of the quasi-leading-edge channel is most sensitive to the change in d/H but is not sensitive to the change in Re. The average Nusselt number of the quasi-leading-edge channel is most sensitive to the change in Re and is least sensitive to the change in Pr. The comprehensive thermal coefficient of the quasi-leading-edge channel is most sensitive to the change in Re. The findings may provide a reference for the design of a steam-cooling structure in the leading edge channel of high-temperature turbine blades.

 Artículos similares

       
 
Wenjie Shen, Suofang Wang, Mengyuan Wang, Jia Suo and Zhao Zhang    
Improving airflow pressure is of great significance for the cooling and sealing of aeroengines. In a co-rotating cavity with radial inflow, vortex reducers are used to decrease the pressure drop. However, the performance of traditional vortex reducers is... ver más
Revista: Aerospace

 
Panagiotis D. Kordas, George N. Lampeas and Konstantinos T. Fotopoulos    
The main purpose of this study comprises the design and the development of a novel experimental configuration for carrying out tests on a full-scale stiffened panel manufactured of fiber-reinforced thermoplastic material. Two different test-bench design ... ver más
Revista: Aerospace

 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Shuang Ruan, Ming Zhang, Shaofei Yang, Xiaohang Hu and Hong Nie    
A dynamic model is established to investigate the shimmy instability of a landing gear system, considering the influence of nonlinear damping. The stability criterion is utilized to determine the critical speed at which the landing gear system becomes un... ver más
Revista: Aerospace

 
Liyuan Wang, Pengfei Zhou, Jiayang Gu and Yapeng Li    
This study focuses on a large-scale cruise ship as the subject of research, with a particular emphasis on conditions not covered in the MSC.1/Circ.1533 guidelines. The investigation explores the impact of specific motion states of the cruise ship, includ... ver más