Resumen
After an aircraft is forced to land, it is easy for it to become stuck in a tilt state of pitch or roll. The pitch/roll state of the aircraft cabin is a critical factor affecting the safe evacuation of the cabin. However, evacuation therein deserves more attention. In this research, an aircraft cabin simulator was developed to study the impact of pitch and roll on the individual and group evacuation speed. The values of the pitch angle ? and roll angle ? considered in the experiments were both 0, ±5, and ±10°. It was found that the average individual passenger speed could be attenuated in an aircraft cabin in pitch or roll conditions, but a pitch angle less than 0 had an acceleration effect on the walking mode. The results of the group evacuation experiments showed that, in addition to affecting the speed of individual passengers, the pitch/roll state also affected the evacuation interval time between a passenger and the preceding one. In addition, the linear fitting models introduced in this paper, which linked the motion of individual and group passengers, could predict the movement speeds accurately. This study provides a valuable benchmark for simulating the evacuation of an aircraft cabin and a reference for the safety design of actual aircraft cabins.