Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Aerospace  /  Vol: 10 Par: 1 (2023)  /  Artículo
ARTÍCULO
TITULO

Numerical Simulations on the Performance of Two-Dimensional Serpentine Nozzle: Effect of Cone Mixer Angle and Aft-Deck

Hamada Mohmed Abdelmotalib Ahmed    
Byung-Guk Ahn and Jeekeun Lee    

Resumen

The current study addresses the effect of different designs of the exhaust mixer and aft-deck on the performance of a two-dimensional convergent nozzle represented by the internal and external flows and heat transfer process. The effect of different exhaust mixer cone angles of 10°, 15°, and 20°, and different aft-deck lengths of 140 mm, 280 mm, and 420 mm on the nozzle performance was investigated. To address the effect of an aft-deck, the flow behavior of a nozzle with an aft-deck was compared to that of a nozzle without an aft-deck. Then, the effect of different aft-deck lengths and different aft-decks with rectangular and trapezoid shapes was investigated. The results demonstrated that increasing the mixer cone angle resulted in decreasing the high-temperature core flow and increasing the low-temperature bypass flow. Increasing the mixer cone angle resulted in reducing the velocity inside the nozzle and at the exhausted jet, which can reduce the noise generated by the engine. Furthermore, increasing the mixer cone angle decreased the internal temperature of the nozzle and, along with the exhausted jet, decreased the infrared radiation. The results also illustrated that the presence of the aft-deck resulted in decreasing the pressure, temperature, and velocity inside the nozzle. The aft-deck also decreased the length and size of the potential core. The aft-deck length had no clear effect on the internal flow. However, increasing the aft-deck length resulted in a decrease in the exhaust gas temperature, which can decrease the infrared radiation. On another hand, using trapezoid and triangle aft-deck can enhance the performance of the nozzle by decreasing the velocity and temperature inside the nozzle and at the exhausted jet.

 Artículos similares

       
 
Sajjad E. Rasheed, Duaa Al-Jeznawi, Musab Aied Qissab Al-Janabi and Luís Filipe Almeida Bernardo    
The structural stability of pipe pile foundations under seismic loading stands as a critical concern, demanding an accurate assessment of the maximum settlement. Traditionally, this task has been addressed through complex numerical modeling, accounting f... ver más

 
Weiyuan Zhu, Jiaqi Cheng, Yutao Pang, Hongbin An, Junpeng Zou, Jie Ren and Cheng Zhang    
This study proposes a new form of underground diaphragm wall foundation with hexagonal sections, called the grid pile foundation (GPF), which is used for long-span bridges. To investigate the lateral bearing capacity characteristics of the integrated pil... ver más
Revista: Applied Sciences

 
Abdul Basit, Safeer Abbas, Muhammad Mubashir Ajmal, Ubaid Ahmad Mughal, Syed Minhaj Saleem Kazmi and Muhammad Junaid Munir    
This study undertakes a comprehensive experimental and numerical analysis of the structural integrity of buried RC sewerage pipes, focusing on the performance of two distinct jointing materials: cement mortar and non-shrinkage grout. Through joint shear ... ver más
Revista: Infrastructures

 
Haotian Luo, Weijun Pan, Yidi Wang and Yuming Luo    
Today, aviation has grown significantly in importance. However, the challenge of flight delays has become increasingly severe due to the need for safe separation between aircraft to mitigate wake turbulence effects. The primary emphasis of this investiga... ver más
Revista: Aerospace

 
Jiaming Fan and Xuefeng Xu    
The phenomenon of surface charging, known as contact electrification or tribocharging, has wide-ranging applications but also notable hazards. Precisely measuring surface charge density in insulating materials is crucial for optimizing tribocharging and ... ver más
Revista: Applied Sciences