Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Aerospace  /  Vol: 10 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

Dynamic Analysis of a Large Deployable Space Truss Structure Considering Semi-Rigid Joints

Huaibo Yao    
Yixin Huang    
Wenlai Ma    
Lei Liang and Yang Zhao    

Resumen

Joints are widely used in large deployable structures but show semi-rigidity due to performance degradation and some nonlinear factors affecting the structure?s dynamic characteristics. This paper investigates the influence of semi-rigid joints on the characteristics of deployable structures in orbit. A virtual connection element of three DOFs is proposed to model the semi-rigid joints. The governing equations of semi-rigid joints are established and integrated into the dynamic equation of the structures. A series of numerical experiments are carried out to validate the proposed model?s accuracy and efficiency, and the deployable truss structures? static and dynamic responses are analyzed. The results show that semi-rigid joints exacerbate the effects of an in-orbit microvibration on the stability of deployable truss structures. Semi-rigid joints lower the dominant frequencies of structures, leading to a ?closely-spaced-frequencies? phenomenon and altering the dynamic responses significantly. The effects of semi-rigid joints on deployable truss structures are long-term and can be used to establish a relationship model between structural performance and service life. Nonlinear effects vary with the external load and depend on the structures? instantaneous status. These results indicate that semi-rigid joints significantly influence the characteristics of deployable structures, which must be considered in the design and analysis of high-precision in-orbit deployable structures.

 Artículos similares

       
 
Seong Hyun Hong, Young Jin Kim, Soo Hyung Park, Sung Nam Jung and Ki Ro Kim    
The air and structural loads of a 5-ton class light helicopter (LH) rotor in a 2.24 g pull-up maneuver are investigated using a coupling between the computational structural dynamics (CSD) and computational fluid dynamics (CFD) methods. The LH rotor is c... ver más
Revista: Aerospace

 
Long Li, Yiming Peng, Yifeng Wang, Xiaohui Wei and Hong Nie    
Arresting gear systems play a vital role in carrier-based aircraft landing. In order to accurately understand the process of arresting hook and cable, this study introduces a parameter inversion method to model the arresting cable and applies it to the t... ver más
Revista: Aerospace

 
Zhitao Guo, Xudong Zhao, Qingfen Ma, Jingru Li and Zhongye Wu    
As a key component connecting a floating wind turbine with static sea cables, dynamic cables undergo significant tensile and bending loads caused by hydrostatic pressure, self-weight, waves, and ocean currents during service, which can lead to fatigue fa... ver más

 
M. Domaneschi, R. Cucuzza, L. Sardone, S. Londoño Lopez, M. Movahedi and G. C. Marano    
Random vibration analysis is a mathematical tool that offers great advantages in predicting the mechanical response of structural systems subjected to external dynamic loads whose nature is intrinsically stochastic, as in cases of sea waves, wind pressur... ver más
Revista: Computation

 
Giuseppe Ciaburro, Gino Iannace, Laura Ricciotti, Antonio Apicella, Valeria Perrotta and Raffaella Aversa    
In this paper, a metamaterial design based on lightweight geopolymeric elements was reported for applications in acoustic insulation.
Revista: Applied Sciences