Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Aerospace  /  Vol: 9 Par: 7 (2022)  /  Artículo
ARTÍCULO
TITULO

Concurrent Trajectory Optimization and Aircraft Design for the Air Cargo Challenge Competition

Nuno M. B. Matos and Andre C. Marta    

Resumen

A coupled aerostructural aircraft design and trajectory optimization framework is developed for the Air Cargo Challenge competition to maximize the expected score based on cargo carried, altitude achieved and distance traveled. Its modular architecture makes it easily adaptable to any problem where the performance depends not only on the design of the aircraft but also on its flight trajectory. It is based on OpenAeroStruct, an aerostructural solver that uses analytic derivatives for efficient gradient-based optimization. A trajectory optimization module using a collocation method is coupled with the option of using b-splines to increase computational efficiency together with an experimentally-based power decay model that accurately determines the aircraft propulsive response to control input depending on the battery discharge level. The optimization problem totaled 206 variables and 283 constraints and was solved in less than 7 h on a standard computer with 12% reduction when using b-splines for trajectory control variables. The results revealed the need to consider the multi-objective total score to account for the different score components and highlighted the importance of the payload level and chosen trajectory. The wing area should be increased within allowable limits to maximize payload capacity, climb to maximum target height should be the focus of the first 60 s of flight and full throttle should be avoided in cruise to reduce losses and extend flight distance. The framework proved to be a valuable tool for students to easily obtain guidelines for both the model aircraft design and control to maximize the competition score.

 Artículos similares

       
 
Yalin Dai, Zhouwei Fan, Jian Xu, You He and Xiongqing Yu    
A special feature of airbreathing hypersonic aircraft is the complex coupling between aerodynamic and propulsive performances. This study presents a rapid analysis methodology for the integration of these two critical aspects in the conceptual design of ... ver más
Revista: Aerospace

 
Pietro Vivalda and Marco Fioriti    
The growing environmental public awareness and the consequential pressure on every industrial field has made environmental impact assessment increasingly important in the last few years. In this scope, the most established tool used in the specialized li... ver más
Revista: Aerospace

 
Ulrich Carsten Johannes Rischmüller, Alexandros Lessis, Patrick Egerer and Mirko Hornung    
A wide range of aircraft propulsion technologies is being investigated in current research to reduce the environmental impact of commercial aviation. As the implementation of purely hydrogen-powered aircraft may encounter various challenges on the airpor... ver más
Revista: Aerospace

 
Roberto Scigliano, Valeria De Simone, Roberta Fusaro, Davide Ferretto and Nicole Viola    
The design of integrated and highly efficient solutions for thermal management is a key capability for different aerospace products, ranging from civil aircraft using hydrogen on board to miniaturized satellites. In particular, this paper discloses a nov... ver más
Revista: Aerospace

 
George Tzoumakis, Konstantinos Fotopoulos and George Lampeas    
Future liquid hydrogen-powered aircraft requires the design and optimization of a large number of systems and subsystems, with cryogenic tanks being one of the largest and most critical. Considering previous space applications, these tanks are usually st... ver más
Revista: Aerospace