Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Aerospace  /  Vol: 9 Par: 10 (2022)  /  Artículo
ARTÍCULO
TITULO

Application of Deep Reinforcement Learning in Reconfiguration Control of Aircraft Anti-Skid Braking System

Shuchang Liu    
Zhong Yang    
Zhao Zhang    
Runqiang Jiang    
Tongyang Ren    
Yuan Jiang    
Shuang Chen and Xiaokai Zhang    

Resumen

The aircraft anti-skid braking system (AABS) plays an important role in aircraft taking off, taxiing, and safe landing. In addition to the disturbances from the complex runway environment, potential component faults, such as actuators faults, can also reduce the safety and reliability of AABS. To meet the increasing performance requirements of AABS under fault and disturbance conditions, a novel reconfiguration controller based on linear active disturbance rejection control combined with deep reinforcement learning was proposed in this paper. The proposed controller treated component faults, external perturbations, and measurement noise as the total disturbances. The twin delayed deep deterministic policy gradient algorithm (TD3) was introduced to realize the parameter self-adjustments of both the extended state observer and the state error feedback law. The action space, state space, reward function, and network structure for the algorithm training were properly designed, so that the total disturbances could be estimated and compensated for more accurately. The simulation results validated the environmental adaptability and robustness of the proposed reconfiguration controller.

 Artículos similares

       
 
Benedikt Bergmann, Stefan Gohl, Declan Garvey, Jindrich Jelínek and Petr Smolyanskiy    
In space application, hybrid pixel detectors of the Timepix family have been considered mainly for the measurement of radiation levels and dosimetry in low earth orbits. Using the example of the Space Application of Timepix Radiation Monitor (SATRAM), we... ver más
Revista: Instruments

 
George Westergaard, Utku Erden, Omar Abdallah Mateo, Sullaiman Musah Lampo, Tahir Cetin Akinci and Oguzhan Topsakal    
Automated Machine Learning (AutoML) tools are revolutionizing the field of machine learning by significantly reducing the need for deep computer science expertise. Designed to make ML more accessible, they enable users to build high-performing models wit... ver más
Revista: Information

 
Alvin Lee, Suet-Peng Yong, Witold Pedrycz and Junzo Watada    
Drones play a pivotal role in various industries of Industry 4.0. For achieving the application of drones in a dynamic environment, finding a clear path for their autonomous flight requires more research. This paper addresses the problem of finding a nav... ver más
Revista: Algorithms

 
Luana Conte, Emanuele Rizzo, Tiziana Grassi, Francesco Bagordo, Elisabetta De Matteis and Giorgio De Nunzio    
Pedigree charts remain essential in oncological genetic counseling for identifying individuals with an increased risk of developing hereditary tumors. However, this valuable data source often remains confined to paper files, going unused. We propose a co... ver más
Revista: Computation

 
Hamed Raoofi, Asa Sabahnia, Daniel Barbeau and Ali Motamedi    
Traditional methods of supervision in the construction industry are time-consuming and costly, requiring significant investments in skilled labor. However, with advancements in artificial intelligence, computer vision, and deep learning, these methods ca... ver más