Resumen
The penetration of unmanned aerial vehicles (UAVs) is an important aspect of UAV games. In recent years, UAV penetration has generally been solved using artificial intelligence methods such as reinforcement learning. However, the high sample demand of the reinforcement learning method poses a significant challenge specifically in the context of UAV games. To improve the sample utilization in UAV penetration, this paper innovatively proposes an improved sampling mechanism called task completion division (TCD) and combines this method with the soft actor critic (SAC) algorithm to form the TCD-SAC algorithm. To compare the performance of the TCD-SAC algorithm with other related baseline algorithms, this study builds a dynamic environment, a UAV game, and conducts training and testing experiments in this environment. The results show that among all the algorithms, the TCD-SAC algorithm has the highest sample utilization rate and the best actual penetration results, and the algorithm has a good adaptability and robustness in dynamic environments.