Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Aerospace  /  Vol: 9 Par: 6 (2022)  /  Artículo
ARTÍCULO
TITULO

Identification Strategy Design with the Solution of Wavelet Singular Spectral Entropy Algorithm for the Aerodynamic System Instability

Mingming Zhang    
Pan Kong    
Anping Hou    
Aiguo Xia    
Wei Tuo and Yongzhao Lv    

Resumen

In order to effectively identify the signs of instability in the aerodynamic system of an axial compressor, a wavelet singular spectral entropy algorithm incorporated within the wavelet transform, singular value decomposition and information entropy is proposed to describe the distribution complexity of the spatial modalities in the flow field. This kind of identification design can accurately distinguish the boundary between the stable and unstable states of the internal flow field from the view of a dynamic system. On the basis of the information entropy algorithm, the wavelet singular spectral entropy algorithm is designed to integrate with the advantages of wavelet transform analysis on the time-frequency localization and singular value decomposition for signal processing and data mining together. So that the quantitative analysis of the definition of rebuilding a system image can be achieved by the solution of wavelet singular spectral entropy. This method can automatically extract the transient information of the space mode in the time-frequency domain. It effectively avoids the shortcoming that the feature extraction on spatial information cannot be accomplished from multiple angles with the single information entropy algorithm. In the data processing of instability signals under different speeds, the wavelet singular spectral entropy algorithm shows a greater advantage in the early warning for compressor stall. The result shows that the value of the wavelet singular spectral shows an obvious mutation when the aerodynamic system approaches the instability boundary. According to the threshold set, the identification hybrid algorithm can detect the stall precursor about 23~96 r in advance. Compared to the single information entropy algorithm, the hybrid wavelet singular spectral entropy algorithm is able to shift to an earlier precursor identification by about 11~82 r. This established hybrid identification algorithm accounts for the nonlinearity of the aerodynamic system, providing a new perspective for the nonlinear system instability identification.

 Artículos similares

       
 
Gricelda Herrera-Franco, Lady Bravo-Montero, Jhon Caicedo-Potosí and Paúl Carrión-Mero    
The excessive use of energy from fossil fuels, which corresponds to population, industrialisation, and unsustainable economic growth, is the cause of carbon dioxide production and climate change. The Water?Energy?Food (WEF) nexus is an applicable concept... ver más
Revista: Water

 
Yueying Ye, Xia Wu and Tianliang Lin    
The proposed braking intention identification control strategy has braking stability.
Revista: Applied Sciences

 
Jiangfeng Li, Jian Dang, Chaohao Xia, Rong Jia, Gaoming Wang, Peihang Li and Yunxiang Zhang    
To efficiently extract the model parameters of photovoltaic (PV) modules, this paper proposed an identification method based on the Dynamic Elite-Leader Multi-Verse Optimizer (DLMVO) algorithm. An adaptive strategy was used to control parameters based on... ver más
Revista: Applied Sciences

 
Valeria Mercuri, Martina Saletta and Claudio Ferretti    
As the prevalence and sophistication of cyber threats continue to increase, the development of robust vulnerability detection techniques becomes paramount in ensuring the security of computer systems. Neural models have demonstrated significant potential... ver más
Revista: Algorithms

 
Jun Li, Hongchao Wang, Simin Li, Liang Chen and Qiqian Dang    
To extract the weak fault features hidden in strong background interference in the event of the early failure of rolling bearings, a two-stage based method is proposed. The broadband noise elimination ability of an adaptive morphological filter (AMF) and... ver más
Revista: Applied Sciences