Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Aerospace  /  Vol: 9 Par: 12 (2022)  /  Artículo
ARTÍCULO
TITULO

Emission-Driven Hybrid Rocket Engine Optimization for Small Launchers

Lorenzo Casalino    
Andrea Ferrero    
Filippo Masseni and Dario Pastrone    

Resumen

Hybrid rocket engines are a green alternative to solid rocket motors and may represent a low-cost alternative to kerosene fueled rockets, while granting performance and control features similar to that of typical storable liquid rocket engines. In this work, the design of a three-stage hybrid launcher is optimized by means of a coupled procedure: an evolutionary algorithm optimizes the engine design, whereas an indirect optimization method optimizes the corresponding ascent trajectory. The trajectory integration also provides the vertical emission profiles required for the evaluation of the environmental impact of the launch. The propellants are a paraffin-based wax and liquid oxygen. The vehicle is launched from the ground and uses an electric turbo pump feed system. The initial mass is given (5000 kg) and the insertion of the payload into a 600-km circular, and polar orbit is considered as a reference mission. Clusters of similar hybrid rocket engines, with only few differences, are employed in all stages to reduce the development and operational costs of the launcher. Optimization is carried out with the aim of maximizing the payload mass and then minimizing the overall environmental impact of the launch. The results show that satisfactory performance is achievable also considering rocket polluting emissions: the carbon footprint of the launch can be reduced by one fourth at the cost of a 5-kg payload mass reduction.

 Artículos similares

       
 
Luiz M. B. C. Campos and Manuel J. S. Silva    
The safety zone around the flight path of a rocket is determined by the fall of debris in the case of an accidental explosion or commanded termination. The trajectory of a tumbling body in a vertical plane is determined by specifying the velocity, flight... ver más
Revista: Aerospace

 
Daniele Cardillo, Francesco Battista, Giuseppe Gallo, Stefano Mungiguerra and Raffaele Savino    
Firing test campaigns were carried out on a 200 N thrust-class hybrid rocket engine, using gaseous oxygen as an oxidizer and a paraffin-wax-based fuel. Different fuel grain lengths were adopted to extend the fuel characterization under different operatin... ver más
Revista: Aerospace

 
Hongsheng Yu, Xiaodong Yu, Hongwei Gao, Luigi T. DeLuca, Wei Zhang and Ruiqi Shen    
The slow regression rate induced by the high pyrolysis difficulty has limited the application and development of hydroxyl-terminated polybutadiene (HTPB)-based fuels in hybrid rocket propulsion. Nickel oxide (NiO) shows the possibility of increasing the ... ver más
Revista: Aerospace

 
Shixiong Song, Quanbin Ren, Min Tang, Jiawei Shi and Jiawei Wang    
Fused deposition technology (FDM), as an additive manufacturing (AM) technology, holds immense potential in the field of solid grain manufacturing. It can accomplish complex grain shaping with ultra-low-pressure ratios, which are challenging to achieve u... ver más
Revista: Aerospace

 
Tianfang Wei, Guobiao Cai, Hui Tian, Yuanjun Zhang, Chengen Li and Xiangyu Meng    
This study investigated reconstruction techniques for building the instantaneous fuel regression rate of the hybrid rocket motor (HRM). Specifically, an experiment in a laboratory 500 N-class hybrid rocket motor with single-port wagon wheel fuel grain, o... ver más
Revista: Aerospace