Resumen
This paper focuses on the mission analysis of the return trajectory of a Vertical Landing Reusable Launch Vehicle, both for Return-to-Launch-Site (RTLS) and DownRange Landing (DRL) recovery strategies. The main objective is to assess the mission performance of propellant-optimal re-entry and landing trajectories from the Main Engine Cut-Off (MECO) while considering propellant budget and peak entry conditions constraints. As a result, performance envelopes and feasibility regions are built to comprehensively assess the required propellant and compare recovery strategies across a broad spectrum of MECO conditions. The results show that the DRL strategy achieves higher efficiency concerning the propellant consumption and a larger robustness regarding the dispersed MECO conditions.