Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Aerospace  /  Vol: 10 Par: 6 (2023)  /  Artículo
ARTÍCULO
TITULO

Aerodynamic Analysis of an Orthogonal Octorotor UAV Considering Horizontal Wind Disturbance

Yao Lei    
Yazhou Li and Jie Wang    

Resumen

In this paper, the aerodynamic performance of an orthogonal octorotor UAV considering horizontal wind disturbances is investigated with numerical simulations and experiments. To obtian the effect of horizontal wind on the flight efficiency of the orthogonal octorotor UAV, the power consumption and thrust with different wind speeds (0?4 m/s) and rotational speeds (1500?2300 RPM) are measured in a low-speed wind tunnel. Also, the velocity distribution of downwash flow, blade tip vortex distribution, streamline distribution and rotor blade tip pressure distribution of the orthogonal octorotor UAV were simulated by the computational fluid dynamics (CFD). The test results show that the thrust is increased at lower wind speed compared with 0 m/s. Specifically, it increased by 8.1% at 2 m/s and 8.8% at 4 m/s, respectively. It is interesting to note that the increased power consumption caused by the interference of horizontal wind at a higher rotor speed leads to a decrease in power loading (PL). Additionally, the thrust increased with a higher PL at low speed, where the PL achieved the maximum for the wind of 2.5 m/s and obtained a better aerodynamic performance. Compared with traditional octorotor UAVs and eight equivalent isolated rotors, the orthogonal octorotor UAV has also been proven to obtain good wind resistance. Simulation results show that the increase in wind speed and rotor speed will make the flow field more complex and the airflow interference between rotors more intense, which leads to changes in rotor thrust and power consumption.

 Artículos similares

       
 
Kyohei Hanazaki and Wataru Yamazaki    
Busemann?s supersonic biplane airfoil can reduce wave drag through shock interactions at its designed freestream Mach number. However, a choking phenomenon occurs with a decrease in the freestream Mach number, and the drag coefficient increases significa... ver más
Revista: Aerospace

 
Yi Wang and Chunxin Yang    
A parafoil is a crucial aerodynamic deceleration device used in the field of airdrop. The overall objective of this paper is to study the aerodynamic characteristics of the curving process of the canopy using the lattice Boltzmann method, to verify it wi... ver más
Revista: Aerospace

 
Neboj?a Lukic, Toni Ivanov, Jelena Svorcan and Aleksandar Simonovic    
A novel concept of morphing airfoils, capable of changing camber and thickness, is proposed. A variable airfoil shape, defined by six input parameters, is achieved by allowing the three spinal points (at fixed axial positions) to slide vertically, while ... ver más
Revista: Aerospace

 
Boqian Ji, Jun Huang, Xiaoqiang Lu, Yacong Wu and Jingjiang Liu    
The wing aerodynamic shape optimization is a typical high-dimensional problem with numerous independent design variables. Researching methods to reduce the dimensionality of optimization from the perspective of aerodynamic characteristics is necessary. O... ver más
Revista: Aerospace

 
Yannian Yang, Yu Liang, Stefan Pröbsting, Pengyu Li, Haoyu Zhang, Benxu Huang, Chaofan Liu, Hailong Pei and Bernd R. Noack    
In the near future, urban air mobility (UAM) will let an old dream of human society come true: affordable and fast air transportation for almost everyone. Among the various existing designs, the multicopter configuration best combines the advantages of c... ver más
Revista: Aerospace