Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Aerospace  /  Vol: 11 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Investigation of the Effect of Magnetic Field and Propellant on Hall Thruster?s Stability via a 0D Model

Luca Leporini    
Ferhat Yaman    
Tommaso Andreussi and Vittorio Giannetti    

Resumen

Hall thrusters are plasma-based devices that have established themselves as one of the most attractive and mature electric propulsion technologies for space applications. These devices often operate in a regime characterized by low frequency, large amplitude oscillations of the discharge current, which is commonly referred to as the ?breathing mode?. The intensity of these oscillations depends on the thruster?s design and operating conditions and can reach values of the order of the average discharge current, posing issues for the thruster?s performance and for coupling with the driving electronics. A 0D model of the thruster discharge was developed to investigate the core physical mechanisms leading to the onset and sustenance of the breathing mode. The model was found to be capable of reproducing oscillations with characteristics in line with those observed in the breathing mode. In this work, we extend the use of the 0D model to investigate the effect of the magnetic field intensity and of different propellants on the system stability.

 Artículos similares

       
 
Hasan Mhd Nazha, Mhd Ayham Darwich, Basem Ammar, Hala Dakkak and Daniel Juhre    
An investigation was conducted to examine the photothermal and thermomechanical effects of short-pulse laser irradiation on normal tissues. This study analyzed the impact of short-pulse laser radiation on the heat-affected region within tissues, taking i... ver más
Revista: Applied Sciences

 
Yasuhiro Akiyama, Shuto Yamada, Shogo Okamoto and Yoji Yamada    
The simulation of fall plays a critical role in estimating injuries caused by fall. However, implementing human fall mitigation motions on a simulator proves challenging due to the complexity and variability of fall movement. Our simulator estimates fall... ver más
Revista: Applied Sciences

 
Hai Du, Hao Jiang, Zhangyi Yang, Haoyang Xia, Shuo Chen and Jifei Wu    
The characteristic of delayed airfoil stalls caused by the bio-inspired Wavy Leading-Edges (WLEs) has attracted extensive attention. This paper investigated the effect of WLEs on the aerodynamic performance and flow topologies of the airfoil through wind... ver más
Revista: Aerospace

 
Sara Bonuso, Pasquale Di Gloria, Guido Marseglia, Ramón A. Otón Martínez, Ghazanfar Mehdi, Zubair Ali Shah, Antonio Ficarella and Maria Grazia De Giorgi    
This study introduces an innovative approach involving the injection of hydrogen into a low-swirl, non-premixed flame, which operates with gaseous fuels derived from an air-blast atomizer designed for aero-engine applications. The aim is to characterize ... ver más
Revista: Aerospace

 
Hongsheng Yu, Xiaodong Yu, Hongwei Gao, Luigi T. DeLuca, Wei Zhang and Ruiqi Shen    
The slow regression rate induced by the high pyrolysis difficulty has limited the application and development of hydroxyl-terminated polybutadiene (HTPB)-based fuels in hybrid rocket propulsion. Nickel oxide (NiO) shows the possibility of increasing the ... ver más
Revista: Aerospace