REVISTA
AI

   
Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  AI  /  Vol: 3 Par: 2 (2022)  /  Artículo
ARTÍCULO
TITULO

Performance Evaluation of Deep Neural Network Model for Coherent X-ray Imaging

Jong Woo Kim    
Marc Messerschmidt and William S. Graves    

Resumen

We present a supervised deep neural network model for phase retrieval of coherent X-ray imaging and evaluate the performance. A supervised deep-learning-based approach requires a large amount of pre-training datasets. In most proposed models, the various experimental uncertainties are not considered when the input dataset, corresponding to the diffraction image in reciprocal space, is generated. We explore the performance of the deep neural network model, which is trained with an ideal quality of dataset, when it faces real-like corrupted diffraction images. We focus on three aspects of data qualities such as a detection dynamic range, a degree of coherence and noise level. The investigation shows that the deep neural network model is robust to a limited dynamic range and partially coherent X-ray illumination in comparison to the traditional phase retrieval, although it is more sensitive to the noise than the iteration-based method. This study suggests a baseline capability of the supervised deep neural network model for coherent X-ray imaging in preparation for the deployment to the laboratory where diffraction images are acquired.

 Artículos similares

       
 
Huang Feng and Yu Zhang    
Extensive research in predicting annual passenger throughput has been conducted, aiming at providing decision support for airport construction, aircraft procurement, resource management, flight scheduling, etc. However, how airport operational throughput... ver más
Revista: Aerospace

 
Ling Zhou, Peng Yan, Yanjun Zhang, Honglei Lei, Shuren Hao, Yueqiang Ma and Shaoyou Sun    
The optimization of the production scheme for enhanced geothermal systems (EGS) in geothermal fields is crucial for enhancing heat production efficiency and prolonging the lifespan of thermal reservoirs. In this study, the 4100?4300 m granite diorite str... ver más
Revista: Water

 
Lin Guo, Anand Balu Nellippallil, Warren F. Smith, Janet K. Allen and Farrokh Mistree    
When dealing with engineering design problems, designers often encounter nonlinear and nonconvex features, multiple objectives, coupled decision making, and various levels of fidelity of sub-systems. To realize the design with limited computational resou... ver más
Revista: Algorithms

 
Mihai Petru Stef and Zsolt Alfred Polgar    
With the constant growth of software-defined radio (SDR) technologies in fields related to wireless communications, the need for efficient ways of testing and evaluating the physical-layer (PHY) protocols developed for these technologies in real-life tra... ver más
Revista: Information

 
Hamed Taherdoost and Mitra Madanchian    
In recent years, artificial intelligence (AI) has seen remarkable advancements, stretching the limits of what is possible and opening up new frontiers. This comparative review investigates the evolving landscape of AI advancements, providing a thorough e... ver más
Revista: AI