Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Aerospace  /  Vol: 10 Par: 8 (2023)  /  Artículo
ARTÍCULO
TITULO

Fluid?Structure Coupling and Aerodynamic Performance of a Multi-Dimensional Morphing Wing with Flexible Metastructure Skin

Hui Yang    
Songcheng Jiang    
Yan Wang and Hong Xiao    

Resumen

A multi-dimensional morphing wing skeleton mechanism is proposed with double-sided triangular pyramid units, which can realize continuous variable span-wise bend, span-wise twist, and sweep. A lockable morphing unit is designed, and its mechanism/structure characteristics, degree of freedom, and the deformable function of its deformable wing skeleton mechanism are analyzed. One kind of flexible skin is proposed to meet the performance requirements, consisting of an internal metastructure and a flexible surface bonded on both sides. The morphing wing skeleton mechanism and the equivalent treated metastructure flexible skin are then combined. Subsequently, a two-way fluid?structure interaction analysis is conducted to investigate the influence of aerodynamic loads on the flexible skin and skeleton mechanism in different deformation states, including the influence of structural passive deformation on the aerodynamic characteristics of the morphing wing. The computational fluid dynamics method is employed to analyze the aerodynamic characteristics of the morphing wing in its initial state, as well as in three deformation states, and to study its aerodynamic performance in different flight environments.

 Artículos similares

       
 
Evangelos Filippou, Spyridon Kilimtzidis, Athanasios Kotzakolios and Vassilis Kostopoulos    
The pursuit of more efficient transport has led engineers to develop a wide variety of aircraft configurations with the aim of reducing fuel consumption and emissions. However, these innovative designs introduce significant aeroelastic couplings that can... ver más
Revista: Aerospace

 
Changkun Yu, Zhigang Wu and Chao Yang    
Slender vehicles often encounter significant aeroservoelastic challenges due to their low elastic mode frequencies and wide servo control system bandwidths. Traditional analysis methods have limitations, including low modeling accuracy for real vehicles ... ver más
Revista: Aerospace

 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Ruhao Hua, Qi Chen, Zhao Wan and Hao Chen    
A body flap/RCS-integrated configuration is often used to achieve pitch trimming and controlled flight in near space for hypersonic vehicles. Under the high temperature and pressure load induced by the expansion wave at the nozzle exit, the body flap is ... ver más
Revista: Aerospace

 
Mingchang Fang, Yanrong Wang, Xianghua Jiang and Peng Tan    
The tubed vortex reducer in the axial compressor can destroy the vortex in the disk cavity, by a thin-walled tube, to reduce the total pressure loss. The tube may suffer from vibration problems, such as flutter and forced vibration, which are closely rel... ver más
Revista: Aerospace