Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Aerospace  /  Vol: 9 Par: 11 (2022)  /  Artículo
ARTÍCULO
TITULO

Dynamic Numerical Simulation of Hybrid Rocket Motor with HTPB-Based Fuel with 58% Aluminum Additives

Hui Tian    
Xiangyu Meng    
Hao Zhu    
Chengen Li    
Lingfei He and Guobiao Cai    

Resumen

The addition of aluminum (Al) to the fuel is an effective way to increase the regression rate of hybrid rocket motors (HRMs). Due to its high regression rate, the impact of the regression of combustion surface on the performance of HRMs cannot be ignored. Therefore, it is significant to establish a dynamic numerical simulation model to predict the performance of HRMs. In this study, the dynamic simulation model was established based on dynamic mesh technology and was verified by a firing test. The results show that the simulation results agree well with the experimental results, and the errors of the average thrust and combustion chamber pressure are 3.4% and 1.4%, respectively. The dynamic simulation shows that with the regression of the combustion surface, the vortex of the pre-combustion chamber is divided into two vortices. The vortex near the front of the grain will increase the regression rate downstream. The results show that the addition of Al can obviously improve the regression rate of HRMs. The fuel containing 58% Al can improve the regression rate by 88.8% compared with the fuel with pure hydroxyl-terminated polybutadiene (HTPB). Moreover, due to the higher combustion temperature and the scouring of metal particles, the ablation rate of the nozzle with carbon ceramic materials reaches 0.16 mm/s. This investigation provides a valuable reference for HRMs design and simulation.

 Artículos similares

       
 
Haopeng Zhang, Runhan Li, Kuan Lu, Xiaohui Gu, Ruijuan Sang and Donglin Li    
The twin-spool rotor-bearing system plays a crucial role in the aero-engine. The potential manufacturing defect, assembly error, and abnormal working loads in the rotor-bearing system can induce multiple rotor failures, such as bolt looseness and rub imp... ver más
Revista: Applied Sciences

 
Fan Zhu, Meng Zhang, Fuxuan Ma, Zhihua Li and Xianqiang Qu    
Wind turbine towers experience complex dynamic loads during actual operation, and these loads are difficult to accurately predict in advance, which may lead to inaccurate structural fatigue and strength assessment during the structural design phase, ther... ver más

 
Yixiao Li, Fang Zhang and Jinhui Jiang    
Dynamic load localization and identification technology is very important in the structural design and optimization of aircraft. This paper proposes a non-global traversal method (NTM) for the fast positioning and recognition of dynamic loads on continuo... ver más
Revista: Aerospace

 
Shuang Ruan, Ming Zhang, Shaofei Yang, Xiaohang Hu and Hong Nie    
A dynamic model is established to investigate the shimmy instability of a landing gear system, considering the influence of nonlinear damping. The stability criterion is utilized to determine the critical speed at which the landing gear system becomes un... ver más
Revista: Aerospace

 
Yadong Zhu, Haifeng Jiao, Shihui Wang, Wenbo Zhu, Mengcheng Wang and Songshan Chen    
In order to study the pressure pulsation characteristics and structural dynamic response characteristics of a vertical shaft cross-flow pump, this study used a computational fluid dynamics (CFD) numerical simulation method to analyze the pressure pulsati... ver más
Revista: Water