Resumen
Through the establishment of a three-dimensional joint clearance model, the effects of joint clearances at different positions on shimmy stability are evaluated. In this paper, considering the radial, axial and coupling characteristics of joint clearance, the shimmy multibody dynamics (MBD) model is applied to different joints in the nose landing gear (NLG) transmission system. It is proposed to evaluate the influence of joint clearance on shimmy from two aspects of position factor and wear factor. The study found that different joint clearances have different effects on shimmy: the joint clearance between the NLG and fuselage has little influence on shimmy; the larger axial clearance of upper and lower torque link joint will cause the shimmy of the NLG, but the radial clearance has no effect on shimmy; while the joint clearance between turning sleeve and upper torque link, lower torque link and piston only works in the axial and radial coupling. The reasons for the different influence characteristics of each joint space are analyzed. Consequently, studying and summarizing the influence of different clearance on shimmy is of great significance for the design and maintenance of the NLG joints.