Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

SAR Image Denoising via Bayesian Wavelet Shrinkage Based on Heavy-Tailed Modeling

Achim    
A. Tsakalides    
P. Bezerianos    
A.    

Resumen

No disponible

 Artículos similares

       
 
Wenhai Cheng, Qunying Zhang, Jiaming Dong, Haiying Wang and Xiaojun Liu    
Resolution and mapping bandwidth are the two most important image performance indicators that reflect satellite synthetic aperture radar (SAR) imaging reconnaissance capability. The PRI-staggered signal can simultaneously achieve high resolution in azimu... ver más
Revista: Applied Sciences

 
Sangwon Lee, Sang-Young Park, Jeongbae Kim, Min-Ho Ka and Youngbum Song    
This study designs a multistatic synthetic aperture radar (SAR) formation-flying system for very-high-resolution stripmap imaging (VHRSI) using manufacturable SAR microsatellites. Multistatic SAR formation specifications for VHRSI are derived based on th... ver más
Revista: Aerospace

 
Haïfa Ben-Romdhane, Diana Francis, Charfeddine Cherif, Kosmas Pavlopoulos, Hosni Ghedira and Steven Griffiths    
In this paper, the feasibility of satellite remote sensing in detecting and predicting locations of buried objects in the archaeological site of Saruq Al-Hadid, United Arab Emirates (UAE) was investigated. Satellite-borne synthetic aperture radar (SAR) i... ver más
Revista: Geosciences

 
Shaona Wang, Yang Liu and Linlin Li    
In this study, a novel feature learning method for synthetic aperture radar (SAR) image automatic target recognition is presented. It is based on spatial pyramid matching (SPM), which represents an image by concatenating the pooling feature vectors that ... ver más
Revista: Applied Sciences

 
Indra Riyanto, Mia Rizkinia, Rahmat Arief and Dodi Sudiana    
Flooding in urban areas is counted as a significant disaster that must be correctly mitigated due to the huge amount of affected people, material losses, hampered economic activity, and flood-related diseases. One of the technologies available for disast... ver más
Revista: Applied Sciences