Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  POULTRY SCIENCE  /  Vol: 91 Núm: 8 Par: 0 (2012)  /  Artículo
ARTÍCULO
TITULO

Improved prediction of meat and bone meal metabolizable energy content for ducks through in vitro methods1

R. A. Garcia    
J. G. Phillips    
and O. Adeola    

Resumen

No disponible

PÁGINAS
pp. 1854 - 1859
REVISTAS SIMILARES
Agronomy
Agriculture
Forests

 Artículos similares

       
 
Xiaobin Mou, Fangxin Wan, Jinfeng Wu, Qi Luo, Shanglong Xin, Guojun Ma, Xiaoliang Zhou, Xiaopeng Huang and Lizeng Peng    
To enhance the utilization of seed-used watermelon peel and mitigate environmental pollution, a hammer-blade seed-used watermelon peel crusher was designed and manufactured, and its structure and working parameters were optimized. Initially, the seed-use... ver más
Revista: Agriculture

 
Haipeng Lin, Xuefeng Song, Fei Dai, Fengwei Zhang, Qiang Xie and Huhu Chen    
Hardness is a critical mechanical property of grains. Accurate predictions of grain hardness play a crucial role in improving grain milling efficiency, reducing grain breakage during transportation, and selecting high-quality crops. In this study, we dev... ver más
Revista: Agriculture

 
Li Sun, Jingfa Yao, Hongbo Cao, Haijiang Chen and Guifa Teng    
In agricultural production, rapid and accurate detection of peach blossom bloom plays a crucial role in yield prediction, and is the foundation for automatic thinning. The currently available manual operation-based detection and counting methods are extr... ver más
Revista: Agriculture

 
Zhongyu Yang, Zirui Yu, Xiaoyun Wang, Wugeng Yan, Shijie Sun, Meichen Feng, Jingjing Sun, Pengyan Su, Xinkai Sun, Zhigang Wang, Chenbo Yang, Chao Wang, Yu Zhao, Lujie Xiao, Xiaoyan Song, Meijun Zhang and Wude Yang    
Aboveground biomass (AGB) is a key parameter reflecting crop growth which plays a vital role in agricultural management and ecosystem assessment. Real-time and non-destructive biomass monitoring is essential for accurate field management and crop yield p... ver más
Revista: Agronomy

 
Wangyang Li, Youzhen Xiang, Xiaochi Liu, Zijun Tang, Xin Wang, Xiangyang Huang, Hongzhao Shi, Mingjie Chen, Yujie Duan, Liaoyuan Ma, Shiyun Wang, Yifang Zhao, Zhijun Li and Fucang Zhang    
Applying hyperspectral remote sensing technology to the prediction of soil moisture content (SMC) during the growth stage of soybean emerges as an effective approach, imperative for advancing the development of modern precision agriculture. This investig... ver más
Revista: Agronomy