Resumen
On a conceptual and normative level, the debate around transformation in the context of disaster risk reduction and climate change adaptation has been rising sharply over the recent years. Yet, whether and how transformation occurs in the messy realities of policy and action, and what separates it from other forms of risk reduction, is far from clear. Jakarta appears to be the perfect example to study these questions. It is amongst the cities with the highest flood risk in the world. Its flood hazard is driven by land subsidence, soil sealing, changes in river discharge, and—increasingly—sea level rise. As all of these trends are set to continue, Jakarta’s flood hazard is expected to intensify in the future. Designing and implementing large-scale risk reduction and adaption measures therefore has been a priority of risk practitioners and policy-makers at city and national level. Against this background, the paper draws on a document analysis and original empirical household survey data to review and evaluate current adaptation measures and to analyze in how far they describe a path that is transformational from previous risk reduction approaches. The results show that the focus is clearly on engineering solutions, foremost in the Giant Sea Wall project. The project is likely to transform the city’s flood hydrology. However, it cements rather than transforms the current risk management paradigm which gravitates around the goal of controlling flood symptoms, rather than addressing their largely anthropogenic root causes. The results also show that the planned measures are heavily contested due to concerns about ecological impacts, social costs, distributional justice, public participation, and long-term effectiveness. On the outlook, the results therefore suggest that the more the flood hazard intensifies in the future, the deeper a societal debate will be needed about the desired pathway in flood risk reduction and overall development planning—particularly with regards to the accepted levels of transformation, such as partial retreat from the most flood-affected areas.